Assessment and prediction of the invasiveness of some alien plants in conditions of climate change in the steppe Dnieper region

  • Y. V. Lykholat Oles Honchar Dnipropetrovsk National University
  • N. A. Khromykh Oles Honchar Dnipropetrovsk National University
  • I. A. Ivan’ko Oles Honchar Dnipropetrovsk National University
  • V. L. Matyukha Government Agency “Institute of Grain Crops”
  • S. S. Kravets Government Agency “Institute of Grain Crops”
  • O. O. Didur Oles Honchar Dnipropetrovsk National University
  • A. A. Alexeyeva Oles Honchar Dnipropetrovsk National University
  • L. V. Shupranova Oles Honchar Dnipropetrovsk National University
Keywords: warming, alien plants, seed reproduction, the initiation of invasive


The flora of the steppe Dnieper region is characterized by an abundance of naturalized alien species, some of which colonised over the last decade. Climate change, associated primarily with increasing temperature, became clearly manifested in this period. We tested the hypothesis that there is an association between climate change and the initiation of invasiveness of some alien plant species in the steppe Dnieper region. For this purpose, comparative studies of the distribution boundaries of naturalized alien trees, shrubs and herbaceous plants were conducted. Along the research route numerous 5–10-year-old broadleaf linden trees (Tilia platyphyllos Scop.) were found in the man-made plantation communities of Dnipro city in areas with moist soil; seeded undergrowth was located at a significant distance from the adult linden plants. Numerous groups of young 7–10-year-old plants of the smoke trees (Cotinus coggygria Scop.), which had a seed origin, were found in the shelterbelt and urban recreational plantations. Young 10–12-year-old virginal and generative plants of the black cherry (Padus serotina Ehrh.) were found in large numbers in both the semi-natural and artificial plant communities at great distances from the adult trees. The alien plant species common hackberry (Celtis occidentalis L.) showed the ability to form fairly sparse seminal seedlings, which was presented by the plants at the age of 4–7 years in both the natural and urban plant communities. The perennial herbaceous plant common milkweed (Asclepias syriaca L.) was found in the course of the research in ruderal habitats, urban plant communities, and also in the agrocoenoses. The common milkweed reached its greatest abundance in fields of winter crops, where the spread of this species was accompanied by a sharp decrease in the number of other species of segetal plants. Our study results confirm that the extension of the distribution boundaries of alien species over the last decade was not related to the ground conditions of the steppe Dnieper region. At the same time, changes in climatic conditions were favourable for some naturalized alien species because they have created the opportunity for seed reproduction of species away from the maternal plants. Alien species C. coggigria, P. serotina and A. syriaca were also the most sensitive to the influence of the climate changes. Consequently, these species have the greatest potential for increasing their level of invasiveness and endangering the biodiversity in the steppe Dnieper region under conditions of climate change. We suggest that a simultaneous initiation of invasiveness of these several alien species leads to an increase in the degree of threat to the diversity of natural plants in the region. The study results confirm the urgent need for analysis and forecasting of the consequences of introduction of alien species, in order to prevent the undesirable effects that this would bring for the region’s native vegetation. 


Araujo, M. B., Alagador, D., Cabeza, M., Nogues-Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology Letters, 14(5), 484–492. >>

Arianoutsou, M., Delipetrou, P., Vilà, M., Dimitrakopoulos, P. G., Celesti-Grapow, L., Wardell-Johnson, G., Henderson, L., Fuentes, N., Ugarte-Mendes, E., & Rundel, P. W. (2013). Comparative patterns of plant invasions in the mediterranean biome. PLoS One, 8(11), e79174. >>

Bacieczko, W., & Borcz, A. (2015). Structure of Asclepias syriaca L. population against phytocenotic and habitat conditions in Widuchowa (West Pomerania). Biodiversity: Research and Conservation, 40, 69–75. >>

Bahuguna, R. N., & Jagadish, K. S. V. (2015). Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83–90. >>

Baranovski, B., Khromykh, N., Karmyzova, L., Ivanko, I., & Lykholat, Y. (2016). Analysis of the alien flora of Dnipropetrovsk Province. Biolo¬gical Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 419–429. >>

Barbarich, A. I., & Horhota, A. Y. (Ed.) (1952). Ozelenenie naselennyih mest [Landscaping of populated sites]. Akademiya Arhitektury USSR, Kiev (in Russian).

Berger, S., Söhlke, G., Walther, G.-R., & Pott, R. (2007). Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia, 37, 523–539. >>

Bergstrom, D. M., Lucieer, A., Kiefer, K., Wasley, J., Belbin, L., Pedersen, T. K., & Chown, S. L. (2009). Indirect effects of invasive species removal devastate world heritage island. Journal of Applied Ecology, 46(1), 73–81. >>

Blackburn, T. M., Essi, F., Evans, T., Hulme, P. I., & Jeschke, J. M. (2014). A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology, 12(5). >>

Bowler, D. E., Haase, P., Kröncke, I., Tackenberg, O., Bauer, H. G., Brendel, C., Brooker, R. W., Gerisch, M., Henle, K., Hickler, T., Hof, C., Klotz, S., Kühn, I., Matesanz, S., O‘Hara, R., Russell, D., Schweiger, O., Valladares, F., Welk, E., Wiemers, M., & Böhning-Gaese, K. (2015). A cross-taxon analysis of the impact of climate change on abundance trends in central Europe. Biological Conservation, 187, 41–50. >>

Brygadyrenko, V. V., & Nazimov, S. S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. Zookeys, 481, 57–68. >>

Brygadyrenko, V. V. (2016). Evaluation of ecological niches of abundant species of Poecilus and Pterostichus (Coleoptera: Carabidae) in forests of the steppe zone of Ukraine. Entomologica Fennica, 27(2), 81–100.

Bussotti, F., Pollastrini, M., Holland, V., & Bruggeman, W. (2015). Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany, 111(3), 91–113. >>

Chabrerie, O., Loinard, J., Perrin, S., Saguez, R., & Decocq, G. (2010). Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest. Biological Invasions, 12(6), 1891–1907. >>

Genovesi, P., & Scalera, R. (2007). Assessment of existing lists of invasive alien species for Europe, with particular focus on species entering Europe through trade, and proposed responses. In: Convention on the conservation of European wildlife and natural habitats. Strasbourg, 26–29 November 2007.

Gritti, E. S., Smith, B., & Sykes, M. T. (2006) Vulnerability of mediterranean basin ecosystems to climate change and invasion by exotic plant species. Journal of Biogeography, 33, 145–157. >>

Jochner, S., & Menzel, A. (2015). Does flower phenology mirror the slowdown of global warming? Ecology and Evolution, 5(11), 2284–2295. >>

Knapp, S., Kuhn, I., Stolle, J., & Klotz, S. (2009). Changes in the functional composition of a Central European urban flora over three centuries. Perspectives in Plant Ecology, Evolution and Systematics, 12(3), 235–244. >>

Linder, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., Van der Maaten, E., Schelhass, M.-J., Lasch, P., Eggers, J., Van der Maaten-Theunissen, M., Suckow, F., Promas, A., Poulter, B., & Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146(12), 69–83. >>

Lykholat, Y. V., Khromykh, N., Ivanko, I., Kovalenko, I., Shupranova, L., & Kharytonov, M. (2016a). Metabolic responses of steppe fores rees to altitude-associated local environmental shanges. Agriculture and Forestry, 62(2), 163–171. >>

Lykholat, Y., Alekseeva, A., Khromykh, N., Ivanko, I., Kharytonov, M., & Kovalenko, I. (2016b). Assessment and prediction of viability and metabolic activity of Tilia platyphyllos in arid steppe climate of Ukraine. Agriculture and Forestry, 62(3), 57–64. >>

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., Braslavska, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatcza, K., Ma¬ge, F., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Schei¬finger, H., Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F. E., Zach, S., & Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976. >>

Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine (Nomenclatural checklist). Naukova Dumka, Kyiv.

Mund, M., Kutsch, W. L., Wirth, C., Kahl, T., Knohl, A., Skomarkova, M. V., & Schulze, E. D. (2010). The influence of climate and fructification on the inter-annual variability of steam growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiology, 30(6), 689–704. >>

Niinemets, U., & Penuelas, J. (2008). Gardening and urban landscaping: Significant players in global change. Trends in Plant Science, 13(2), 60–65. >>

Pauková, Ž., Káderová, V., & Bakay, L. (2013). Structure and population dynamics of Asclepias syriaca L. in the agri-cultural land. Agriculture (Poľnohospodárstvo), 59(4), 161–166. >>

Pompe, S., Hanspach, J., Badeck, F.-W., Klotz, S., Bruelheide, H., & Kuhn, I. (2010). Investigating habitat-specific plant species pools under climate change. Basic and Applied Ecology, 11, 603–611. >>

Prieto, P., Penuelas, J., Niinemets, U., Ogaya, R., Schmidt, I. K., Beier, C., Tietema, A., Sowerby, A., Emmett, B. A., Lang, E. K., Kroel-Dulay, G., Lhotsky, B., Cesaraccio, C., Pellizzaro, G., DeDato, G., Sirca, C., & Estiarte, M. (2009). Changes in the onset of spring growth in shrubland species in response to experimental warming along a north-south gradient tin Europe. Global Ecology and Biogeography, 18, 473–484. >>

Pyšek, P., Danihelka, J., Sádlo, J., Chrtek, J. Jr., Chytrý, M., Jarošík, V., Kaplan, Z., Krahulec, F., Moravcová, L., Pergl, J., Štajerová, K., & Tichý, L. (2012). Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia, 84, 155–255.

Ramirez-Valiente, J. A., Koehler, K., & Cavender-Bares, J. (2015). Climatic origins predict variations in photoprotective leaf pigments in response to drought and law temperature in live oaks (Quercus series virentes). Tree Physiology, 35(1), 521–534. >>

Richardson, D. M., Pyśek, P., Redjmanek, M., Barbour, N. G., Panetta, F. D., & West, S. J. (2000). Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions, 6, 93–107.

Sperlich, D., Chang, C. T., Penuelas, J., Gracia, C., & Sabate, S. (2015). Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a mediterranean mixed forest. Tree Physiology, 35(5), 501–520. >>

Suarez, A. V., & Tsutsui, N. D. (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17(1), 351–360. >>

Tarasov, V. V. (2005). Flora Dnipropetrovskoy ta Zaporizkoy oblastey. Sudyn¬ni roslyny. Biologo-ekologichna harakterystyka vydiv (Monografiya) [Flora of Dnipropetrovsk and Zaporizhzhya oblasts. Vascular Plants. Biology-ecology characteristics of species]. DnipropetrovskUniversity Press, Dnipropetrovsk (in Ukrainian).

Thuiller, W., Richardson, D. M., & Midgley, G. F. (2007). Will climate change promote alien plant invasions? In: Nentwig, W. (ed.) Ecological Studies, Biological Invasions, 193. Springer-Verlag Berlin, Heidelberg, 197–211.

Urban, M. C, Tewksbury, J. J, & Sheldon, K. S. (2012). On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B, 279(1735), 2072–2080. >>

Van der Veken, S., Hermy, M., Vellend, M., Knapen, A., & Verheyen, K. (2008). Garden plants get a head start on climate change. Frontiers in Ecology and the Environment, 6(4), 212–216.

Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D., & Hulme, P. I. (2010). How well do we understand the impacts of alien species on ecological services? A pan-European cross-taxa assessment. Frontiers in Ecology and the Environment, 8(3), 135–144. >>

Walther, G. R., Gritti, E. S., Berger, S., Hickler, T., Tang, Z., & Sykes, M. T. (2007). Palms tracking climate change. Global Ecology and Biogeography, 16(6), 801–809. >>

Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pysek, P., Kuhn, I., & Zobel, M. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology and Evolution, 24(12), 686–693.

Wołkowycki, D., & Próchnicki, P. (2015). Spatial expansion pattern of black cherry Padus serotina Ehrh. in suburban zone of Białystok (NE Po¬land). Biodiversity Research and Conservation, 40(1), 59–67. >>


Most read articles by the same author(s)