Nematicidal activity of aqueous tinctures of medicinal plants against larvae of the nematodes Strongyloides papillosus and Haemonchus contortus

Keywords: mortality of larvae; nematocidial activity; aqueous tinctures of medical plants; Nematoda.


The study focuses on in vitro effect of aqueous tinctures of 48 species of herbaceous, shrub and tree plants on the first-third stage larvae of Strongyloides papillosus (Wedl, 1856) and third-stage larvae of Haemonchus contortus (Rudolphi, 1803) Cobb, 1898. The highest level of the effect was exerted by 3% aqueous tinctures of Wisteria sinensis (Sims) DC., Ailanthus altissima (Mill.) Swingle, Laburnum anagyroides Medik., Quercus petraea subsp. iberica (Steven ex M. Bieb.) Krassiln., Ginkgo biloba L., Colchicum autumnale L., Aristolochia manshuriensis Kom., Celastrus scandens L., Securigera varia (L.) Lassen, Magnolia kobus DC. Over 90% of the first and second non-invasive stage larvae of S. papillosus died at contact with these tinctures. The lowest parameters of LD50 were seen for L. anagyroides, Juniperus sabina L., C. scandens, M. kobus, A. manshuriensis, Wisteria sinensis (Sims) DC. and Securigera varia (L.) Lassen. Invasive larvae of S. papillosus and H. contortus were resistant to the effect of all the 48 surveyed species of plants. Third-stage larvae of H. contortus remained vital when exposed for 24 h to all the studied concentrations up to 3% aqueous tincture of plants. The results of the experiments and also the analysis of the literature indicate the necessity to continue the survey on nematocidial activity of aqueous tinctures and alcveshol extracts of plants.


Abdel-Ghaffar, F., Semmler, M., Al-Rasheid, K. A. S., Strassen, B., Fischer, K., Aksu, G., Klimpel, S., & Mehlhorn, H. (2010). The effects of different plant extracts on intestinal cestodes and on trematodes. Parasitology Research, 108(4), 979–984.

Albouchi, F., Hassen, I., Casabianca, H., & Hosni, K. (2013). Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) Swingle leaves. South African Journal of Botany, 87, 164–174.

Al-Snafi, A. E. (2015). The pharmacological importance of Ailanthus altissima – a review. International Journal of Pharmacy Review and Research, 5(2), 121–129.

Ayeb-Zakhama, A., Ben Salem, S., Sakka-Rouis, L., Flamini, G., Ben Jannet, H., & Harzallah-Skhiri, F. (2014). Chemical composition and phytotoxic effects of essential oils obtained from Ailanthus altissima (Mill.) Swingle cultivated in Tunisia. Chemistry and Biodiversity, 11(8), 1216–1227.

Boyko, O. (2008a). Zalezhnіst' glybyny mіgratsіji lychynok nematod pіdryadіv Strongylata і Rhabditata vіd mekhanіchnogo skladu gruntu [Dependence of migration depth of nematodes of Strongylata and Rhabditata nematodes on mechanical soil composition]. Scientific and Technical Bulletin of the Institute of Animal Biology and the State Research Control of the Institute of Veterinary Drugs and Feed Additives, 9(4), 117–121.

Boyko, O. O., & Brygadyrenko, V. V. (2018). The impact of certain flavourings and preservatives on the survivability of larvae of nematodes of Ruminantia. Regulatory Mechanisms in Biosystems, 9(1), 118–123.

Boyko, O. O., & Brygadyrenko, V. V. (2019a). The viability of Haemonchus contortus (Nematoda, Strongylida) and Strongyloides papillosus (Nematoda, Rhabditida) larvae exposed to various flavourings and source materials used in food production. Vestnik Zoologii, 53(6), 433–442.

Boyko, O. O., & Brygadyrenko, V. V. (2019b). Nematocidial activity of aqueous solutions of plants of the families Cupressaceae, Rosaceae, Asteraceae, Fabaceae, Cannabaceae and Apiaceae. Biosystems Diversity, 27(3), 227–232.

Boyko, О. О. (2008). Development of larvae of suborders Strongylata and Rhabditata in differently mineralized soils. Visnyk of Dnipropetrovsk University, Biology, Ecology, 16(2), 8–11.

Bray, D. H., Boardman, P., O’Neill, M. J., Chan, K. L., Phillipson, J. D., Warhurst, D. C., & Suffness, M. (1987). Plants as a source of antimalarial drugs 5. Activities of Ailanthus altissima stem constituents and of some related quassinoids. Phytotherapy Research, 1(1), 22–24.

Caboni, P., Ntalli, N. G., Aissani, N., Cavoski, I., & Angioni, A. (2012). Nematicidal activity of (E,E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. Journal of Agricultural and Food Chemistry, 60(4), 1146–1151.

Cho, H., Sowndhararajan, K., Jung, J.-W., Jhoo, J.-W., & Kim, S. (2015). Fragrant chemicals in the supercritical carbon dioxide extract of Magnolia kobus DC. flower buds increase the concentration state of brain function. Journal of Essential Oil Bearing Plants, 18(5), 1059–1069.

Deori, K., & Yadav, A. K. (2015). Anthelmintic effects of Oroxylum indicum stem bark extract on juvenile and adult stages of Hymenolepis diminuta (Cestoda), an in vitro and in vivo study. Parasitology Research, 115(3), 1275–1285.

El-Rigal, N. S, Aly, S. A., Rizk, M., & Said, A. (2006). Use of Ailanthus altissima and Ziziphus spina christi extracts as folk medicine for treatment of some hepatic disorders in Schistosoma mansoni infected mice. Trends in Medical Research, 1(2), 100–112.

Forrester, R. (1979). “Have you eaten laburnum?” The Lancet, 313(8125), 1073.

Gogoi, S., & Yadav, A. (2016). In vitro and in vivo anthelmintic effects of Caesalpinia bonducella (L.) Roxb. leaf extract on Hymenolepis diminuta (Cestoda) and Syphacia obvelata (Nematoda). Journal of Intercultural Ethnopharmacology, 5(4), 427.

Gu, X., Fang, C., Yang, G., Xie, Y., Nong, X., Zhu, J., Wang, S., Peng, X., & Yan, Q. (2013). Acaricidal properties of an Ailanthus altissima bark extract against Psoroptes cuniculi and Sarcoptes scabiei var. cuniculi in vitro. Experimental and Applied Acarology, 62(2), 225–232.

Gülz, P.-G., Müller, E., Schmitz, K., Marner, F.-J., & Güth, S. (1992). Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Zeitschrift Für Naturforschung C, 47, 516–526.

Hu, S.-L., Zhang, H.-Q., Chan, K., & Mei, Q.-X. (2004). Studies on the toxicity of Aristolochia manshuriensis (Guanmuton). Toxicology, 198, 195–201.

Jiang, J. M., Yang, L., Fei, S. M., Mo, K. L., & Sun, Q. X. (2013). Mollusicidal effects of some species of plants in hilly and mountainous areas. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi, 25(3), 255–258.

Jiang, Y. H., Fan, X. H., & Jiang, H. (2009). Extraction of Wisteria sinensis active constituent and its inhibitory effect on fungi and bacteria. Journal of Henan Agricultural Sciences, 38(3), 60–62. (in Chinese).

Keskin, S., Sirin, Y., Cakir, H. E., & Keskin, M. (2019). Phenolic composition and antioxidant properties of Wisteria sinensis. International Journal of Scientific and Technological Research, 5(2), 98–103.

Lü, J. H., & Shi, Y. L. (2011). The bioactivitiy of essential oil from Ailanthus altissima Swingle (Sapindales: Simaroubaceae) bark on Lasioderma serricorne(Fabricius) (Coleoptera: Anobiidae). Advanced Materials Research, 365, 428–432.

Maltas, E., Vural, H. C., & Yildiz, S. (2011). Antioxidant activity and fatty acid composition of Ginkgo biloba from Turkey. Journal of Food Biochemistry, 35(3), 803–818.

Mohamed, M. A., Hamed, M. M., Abdou, A. M., Ahmed, W. S., & Saad, A. M. (2011). Antioxidant and cytotoxic constituents from Wisteria sinensis. Molecules, 16(5), 4020–4030.

Mohanta, T. K., Tamboli, Y., & Zubaidha, P. K. (2014). Phytochemical and medicinal importance of Ginkgo biloba L. Natural Product Research, 28(10), 746–752.

Okunade, A. L., Bikoff, R. E., Casper, S. J., Oksman, A., Goldberg, D. E., & Lewis, W. H. (2003). Antiplasmodial activity of extracts and quassinoids isolated from seedlings of Ailanthus altissima (Simaroubaceae). Phytotherapy Research, 17(6), 675–677.

Poljuha, D., Sladonja, B., Šola, I., Dudaš, S., Bilić, J., Rusak, G., Motlhatlego, K. E., & Eloff, J. N. (2017). Phenolic composition of leaf extracts of Ailanthus altissima (Simaroubaceae) with antibacterial and antifungal activity equivalent to standard antibiotics. Natural Product Communications, 12(10), 1201.

Reshetniak, D. Y., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Possibility of identifying plant components of the diet of Harpalus rufipes (Coleoptera, Carabidae) by visual evaluation. Regulatory Mechanisms in Biosystems, 8(3), 377–383.

Temjenmongla, Yadav, A., & Deori, K. (2015). Anthelmintic effects of Psidium guajava and Lasia spinosa on Hymenolepis diminuta (Cestoda): A scanning electron microscopic study. Journal of Advanced Microscopy Research, 10(1), 20–23.

Wu, L., Wang, B., Zhao, M., Liu, W., Zhang, P., Shi, Y., Xiong, C., Wang, P., Sun, W., & Chen, S. (2016). Rapid identification of officinal Akebiae caulis and its toxic adulterant Aristolochiae manshuriensis caulis (Aristolochia manshuriensis) by loop-mediated isothermal amplification. Frontiers in Plant Science, 2016, 7.

Yadav, A. K., & Tangpu, V. (2011). Anthelmintic activity of ripe fruit extract of Solanum myriacanthum Dunal (Solanaceae) against experimentally induced Hymenolepis diminuta (Cestoda) infections in rats. Parasitology Research, 110(2), 1047–1053.

Yevstafieva, V. А., Kravchenko, S. O., Gutyj, B. V., Melnychuk, V. V., Kovalenko, P. N., & Volovyk, L. B. (2019). Morphobiological analysis of Trichuris vulpis (Nematoda, Trichuridae), obtained from domestic dogs. Regulatory Mechanisms in Biosystems, 10(2), 165–171.

Zajac, A. M., & Conboy, G. A. (Eds.). (2011). Veterinary clinical parasitology. 8th ed. John Wiley and Sons, London.

Zazharska, N., Boyko, O., & Brygadyrenko, V. (2016). Influence of diet on the productivity and characteristics of goat milk. Indian Journal of Animal Research, 52(5), 711–717.

Zhu, Y.-P. (2002). Toxicity of the chinese herb Mu Tong (Aristolochia manshuriensis). Adverse Drug Reactions and Toxicological Reviews, 21(4), 171–177.

Zuzuk, B. M., Kutsik, R. V., Darmogray, R. E., & Tomchuk, Y. (2001). Ginkgo biloba (analiticheskij obzor) [Ginkgo biloba (analytical review)]. Pharmacist (Kharkov), 19, 34–38 (in Ukrainian).


Most read articles by the same author(s)

> >>