The role of ecological groups in the formation of cyanobacterial communities in the ecosystems of the North Azov region (Ukraine)

  • A. M. Solonenko Bogdan Khmelnitsky Melitopol State Pedagogical University
  • L. I. Arabadzhy-Tipenko Bogdan Khmelnitsky Melitopol State Pedagogical University
  • O. M. Kunakh Oles Honchar Dnipro National University
  • D. V. Kovalenko Bogdan Khmelnitsky Melitopol State Pedagogical University
Keywords: diversity; ecological groups; environmental gradients; geographical range; variation partitioning.


The role of Cyanoprokaryota ecological groups in the ecosystems of the North Azov region was revealed in this work. On the territory of Pryazovskyi National Nature Park, 9 experimental polygons were studied, which covered steppe areas or slopes, salt marshes, coastal sandy soils and water bodies (rivers, lakes, estuaries, sea bays, lagoons). As a result of research on the territory of Pryazovskyi National Nature Park, 124 species of cyanoprokaryotes were identified, which include 127 intraspecific taxa. It was proved that the procedure of canonical correspondence analysis is the most suitable for the analysis of the species matrix. The axes identified as a result of the ordination procedure, which indicate the coordinated dynamics of the species, correlated with both synecological characteristics, such as diversity indicators, and with autoecological characteristics, such as ecotypes of cyanoprokaryotes in relation to habitat types or types of adaptation to salinity conditions. The first four canonical axes together explain 47.5% of species matrix variability. Canonical axis 1 explains 18.0% of the variability of the species matrix and is mostly marked by aqual subaerophytes and eurybionts. This axis indicates the presence of a gradient of salinity conditions where the most saline conditions correspond to the positive values of the axis, and the negative values correspond to less saline. Canonical axis 2 describes 12.1% of species matrix variability. This axis differentiates aquatic ecosystems from others. Canonical axis 3 explains 10.0% of the communities’ variability. This axis distinguishes freshwater ecosystems from saline ecosystems. Markers of freshwater communities are stenotopic halotolerants, which are narrow-range, common mainly in the temperate zone of Europe. The canonical axis 4 explains 7.3% of variability of the matrix of species and is able to differentiate sand ecosystems. The ecotopic structure and geographic range width of community species have the greatest independent value among the considered sources of variation. The independent role of adaptation to the salinity conditions of the ecotope and the role of the type of ecosystems is somewhat smaller. The interaction between the sources of variation is important in the variation of the structure of communities. The interaction between the ecotopic structure and the geographic range width of species and the triple interaction between the ecotopic structure of a community, the width of the geographic range of species and the ecosystem type plays the greatest role in the variation of community structure. Ecotopic groups, which indicate the preference of a particular habitat, correlate with the species composition of the communities. It is shown that the ratio of ecototopic groups in a community is a characteristic that reveals the features of the community as a whole.


Alahuhta, J., Lindholm, M., Bove, C. P., Chappuis, E., Clayton, J., de Winton, M., Feldmann, T., Ecke, F., Gacia, E., Grillas, P., Hoyer, M. V., Johnson, L. B., Kolada, A., Kosten, S., Lauridsen, T., Lukács, B. A., Mjelde, M., Mormul, R. P., Rhazi, L., Rhazi, M., Sass, L., Sondergaard, M.,Xu, J., & Heino, J. (2018). Global patterns in the metacommunity structuring of lake macrophytes: Regional variations and driving factors. Oecologia, 188(4), 1167–1182.

Alves, C., Vieira, C., Almeida, R., & Hespanhol, H. (2016). Genera as surrogates of bryophyte species richness and composition. Ecological Indicators, 63, 82–88.

Andersen, A. N. (1995). Measuring more of biodiversity: Genus richness as a surrogate for species richness in Australian ant faunas. Biological Conservation, 73(1), 39–43.

Arrhenius, O. (1921). Species and area. The Journal of Ecology, 9(1), 95.

Astor, T., von Proschwitz, T., Strengbom, J., Berg, M. P., & Bengtsson, J. (2017). Importance of environmental and spatial components for species and trait composition in terrestrial snail communities. Journal of Biogeography, 44(6), 1362–1372.

Backer, L. C., Manassaram-Baptiste, D., LePrell, R., & Bolton, B. (2015). Cyanobacteria and algae blooms: Review of health and environmental data from the harmful algal bloom-related illness surveillance system (HABISS) 2007–2011. Toxins, 7(4), 1048–1064.

Badri, H., Monsieurs, P., Coninx, I., Wattiez, R., & Leys, N. (2015). Molecular in­vestigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. Microbiology Open, 4(2), 187–207.

Báldi, A. (2003). Using higher taxa as surrogates of species richness: A study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic and Applied Ecology, 4(6), 589–593.

Becker, V., Caputo, L., Ordóñez, J., Marcé, R., Armengol, J., Crossetti, L. O., & Huszar, V. L. M. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research, 44(11), 3345–3354.

Becker, V., Huszar, V. L. M., & Crossetti, L. O. (2009). Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 628(1), 137–151.

Berman, T. (2001). The role of DON and the effect of N : P ratios on occurrence of cyanobacterial blooms: Implications from the outgrowth of Aphanizomenon in Lake Kinneret. Limnology and Oceanography, 46(2), 443–447.

Beversdorf, L. J., Miller, T. R., & McMahon, K. D. (2015). Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes. Frontiers in Microbiology, 6, 456.

Bláha, L., Babica, P., & Maršálek, B. (2009). Toxins produced in cyanobacterial wa­ter blooms – toxicity and risks. Interdisciplinary Toxicology, 2(2), 36–41.

Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68.

Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73(3), 1045–1055.

Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen fixation and hydrogen metabolism in Cyanobacteria. Microbiology and Molecular Bio­logy Reviews, 74(4), 529–551.

Bozinovic, F., & Naya, D. E. (2015). Linking physiology, climate, and species distribu­tional ranges. In: Integrative organismal biology. Wiley Blackwell. Pp. 277–290.

Bozinovic, F., Calosi, P., & Spicer, J. I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42(1), 155–179.

Brookes, J. D., & Carey, C. C. (2011). Ecology: Resilience to blooms. Science, 334(6052), 46–47.

Callieri, C., & Stockner, J. (2000). Picocyanobacteria success in oligotrophic lakes: Fact or fiction? Journal of Limnology, 59(1), 72–76.

Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., & Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46(5), 1394–1407.

Červený, J., Sinetova, M. A., Zavřel, T., & Los, D. A. (2015). Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: An impact of histidine kinase 34. Life, 5(1), 676–699.

Chittora, D., Meena, M., Barupal, T., & Swapnil, P. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 100737.

Cho, J. C., & Tiedje, J. M. (2000). Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Applied and Environmental Microbiology, 66(12), 5448–5456.

Coad, P., Cathers, B., Ball, J. E., & Kadluczka, R. (2014). Proactive management of estuarine algal blooms using an automated monitoring buoy coupled with an artificial neural network. Environmental Modelling and Software, 61, 393–409.

Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: Risk management for health protection. Toxicology and Applied Pharmacology, 203(3), 264–272.

Codd, G., Bell, S., Kaya, K., Ward, C., Beattie, K., & Metcalf, J. (1999). Cyanobacterial toxins, exposure routes and human health. European Journal of Phycology, 34(4), 405–415.

Costa, L. S., Huszar, V. L. M., & Ovalle, A. R. (2009). Phytoplankton functional groups in a tropical estuary: Hydrological control and nutrient limitation. Estuaries and Coasts, 32(3), 508–521.

Cupertino, A., Gücker, B., Von Rückert, G., & Figueredo, C. C. (2019). Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring: Taxonomic versus functional groups. Ecological Indicators, 101, 522–532.

Dadheech, P. K., Selmeczy, G. B., Vasas, G., Pádisak, J., Arp, W., Tapolczai, K., Casper, P., & Krienitz, L. (2014). Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in Baltic lake district, Germany: An ecological, genetic and toxicological survey. Toxins, 6(10), 2912–2931.

Davidson, K., Gowen, R. J., Harrison, P. J., Fleming, L. E., Hoagland, P., & Moschonas, G. (2014). Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206–216.

Downing, J. A., Watson, S. B., & McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58(10), 1905–1908.

Enquist, B. J., Haskell, J. P., & Tiffney, B. H. (2002). General patterns of taxonomic and biomass partitioning in extant and fossil plant communities. Nature, 419(6907), 610–613.

Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631.

Fischer, M. M. (2019). Quantifying the uncertainty of variance partitioning estimates of ecological datasets. Environmental and Ecological Statistics, 26(4), 351–366.

Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology, 12(1), 42.

Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., & Martiny, A. C. (2013). Present and future global distrib6utions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9824–9829.

Foissner, W. (2006). Biogeography and dispersal of micro-organisms: A review em­phasizing protists. Acta Protozoologica, 45, 111–136.

Fuchsman, C. A., Palevsky, H. I., Widner, B., Duffy, M., Carlson, M. C. G., Neibauer, J. A., Mulholland, M. R., Keil, R. G., Devol, A. H., & Rocap, G. (2019). Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone. ISME Journal, 13(11), 2714–2726.

Gilbert, B., & Bennett, J. R. (2010). Partitioning variation in ecological communities: Do the numbers add up? Journal of Applied Ecology, 47(5), 1071–1082.

Gleason, H. A. (1922). On the relation between species and area. Ecology, 3(2), 158–162.

Glockner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterio­plankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065.

Gongalsky, K. B. (2014). Wildfires and soil fauna. KMK Scientific Press Ltd, Moscow.

Hamilton, T. L., Bryant, D. A., & Macalady, J. L. (2016). The role of biology in pla­netary evolution: Cyanobacterial primary production in low-oxygen Proterozoic oceans. Environmental Microbiology, 18(2), 325–340.

Hoffman, L. (1999). Marine cyanobacteria in tropical regions: Diversity and ecology. European Journal of Phycology, 34(4), 371–379.

Hoffmann, L. (1996). Geographic distribution of freshwater blue-green algae. Hydro­biologia, 336, 33–40.

Hollerbach, M. M., & Stina, E. A. (1969). Soil algae. Science, Leningrad.

Inoue, N., Taira, Y., Emi, T., Yamane, Y., Kashino, Y., Koike, H., & Satoh, K. (2001). Acclimation to the growth temperature and the high-temperatureeffects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant and Cell Physiology, 42(10), 1140–1148.

Ionescu, D., Hindiyeh, M., Malkawi, H., & Oren, A. (2010). Biogeography of thermophilic cyanobacteria: Insights from the Zerka Ma’in hot springs (Jordan). FEMS Microbiology Ecology, 72(1), 103–113.

Jiang, Y. L., Wang, X. P., Sun, H., Han, S. J., Li, W. F., Cui, N., Lin, G. M., Zhang, J. Y., Cheng, W., Cao, D. D., Zhang, Z. Y., Zhang, C. C., Chen, Y., & Zhou, C. Z. (2017). Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proceedings of the National Academy of Sciences of the United States of America, 115(2), 403–408.

Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2010). Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME Journal, 4(2), 191–202.

Kimambo, O. N., Gumbo, J. R., & Chikoore, H. (2019). The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorolo­gical and environmental variations in Tanzania. Heliyon, 5(3), e01312.

Kitahara, R., Oyama, K., Kawamura, T., Mitsuhashi, K., Kitazawa, S., Yasunaga, K., Sagara, N., Fujimoto, M., & Terauchi, K. (2019). Pressure accelerates the circadian clock of cyanobacteria. Scientific Reports, 9(1), 1–8.

Kokociński, M., Stefaniak, K., Mankiewicz-Boczek, J., Izydorczyk, K., & Soininen, J. (2010). The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). European Journal of Phycology, 45(4), 365–374.

Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota. I. Chroococcales. Spektrum, Akademischer Verlag, Heidelberg, Berlin.

Kraus, M. P. (1969). Resistance of blue-green algae to 60Co gamma radiation. Radiation Botany, 9(6), 481–489.

Kruk, C., Devercelli, M., Huszar, V. L. M., Hernández, E., Beamud, G., Diaz, M., Silva, L. H. S., & Segura, A. M. (2017). Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology, 62(10), 1681–1692.

Legendre, P. (2007). Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. Chinese Journal of Plant Ecology, 31(5), 976–981.

Legendre, P., Borcard, D., & Peres-Neto, P. R. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75(4), 435–450.

Liu, X., Hou, W., Dong, H., Wang, S., Jiang, H., Wu, G., Yang, J., & Li, G. (2016). Distribution and diversity of cyanobacteria and eukaryotic algae in Qinghai–Tibetan Lakes. Geomicrobiology Journal, 33(10), 860–869.

Lopes, V. R., & Vasconcelos, V. M. (2011). Planktonic and benthic cyanobacteria of European brackish waters: A perspective on estuaries and brackish seas. European Journal of Phycology, 46(3), 292–304.

Lürling, M., e Mello, M. M., van Oosterhout, F., de Senerpont Domis, L., & Marinho, M. M. (2018). Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Frontiers in Microbiology, 9, 1851.

Machado, K. B., Borges, P. P., Carneiro, F. M., de Santana, J. F., Vieira, L. C. G., de Moraes Huszar, V. L., & Nabout, J. C. (2015). Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia, 743(1), 255–267.

Maltseva, I., Yarova, T., Arabadzhi-Tipenko, L., Pavlenko, O., Yakoviichuk, O., Zinenko, A., & Manuilova, M. (2019). Innovative technologies for ensuring ecological safety of maritime recreation. In: Ekkert, M., Nestorenko, O., & Szynk, M. (Eds.). Modern innovative and information technologies in the development of society. Wydawnictwo Wyższej Szkoły Technicznej w Katowicach, Katowice. Pp. 29–38.

Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Øvreås, L., Reysenbach, A. L., Smith, V. H., & Staley, J. T. (2006). Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology, 4(2), 102–112.

Miller, S. R., Castenholz, R. W., & Pedersen, D. (2007). Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Applied and Environmental Microbiology, 73(15), 4751–4759.

Mullins, T. D., Britschgi, T. B., Krest, R. L., & Gioivannoni, S. J. (1995). Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnology and Oceanography, 40(1), 148–158.

Napiórkowska-Krzebietke, A., & Hutorowicz, A. (2013). A comparison of epilimnetic versus metalimnetic phytoplankton assemblages in two mesotrophic lakes. Oceanological and Hydrobiological Studies, 42(1), 89–98.

Nixdorf, B., & Deneke, R. (1997). Why ’very shallow‘ lakes are more successful opposing reduced nutrient loads. Hydrobiologia, 342/343, 269–284.

Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621(1), 1–19.

Palmer, M. W., McGlinn, D. J., & Fridley, J. D. (2008). Artifacts and artifictioxns in biodiversity research. Folia Geobotanica, 43(3), 245–257.

Pankratova, E. M. (2006). Functioning of cyanobacteria in soil ecosystems. Eurasian Soil Science, 39(S1), S118–S127.

Papke, R. T., Ramsing, N. B., Bateson, M. M., & Ward, D. M. (2003). Geographical isolation in hot spring cyanobacteria. Environmental Microbiology, 5(8), 650–659.

Pearson, T., Giffard, P., Beckstrom-Sternberg, S., Auerbach, R., Hornstra, H., Tuanyok, A., Price, E. P., Glass, M. B., Leadem, B., Beckstrom-Sternberg, J. S., Allan, G. J., Foster, J. T., Wagner, D. M., Okinaka, R. T., Sim, S. H., Pearson, O., Wu, Z., Chang, J., Kaul, R., Hoffmaster, A. R., Brettin, T. S., Robison, R. A., Mayo, M., Gee, J. E., Tan, P., Currie, B. J., & Keim, P. (2009). Phylogeogra­phic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biology, 7(1), 78.

Pełechata, A., Pełechaty, M., & Pukacz, A. (2016). Factors influencing cyanobacteria community structure in Chara-lakes. Ecological Indicators, 71, 477–490.

Pither, J. (2003). Climate tolerance and interspecific variation in geographic range size. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1514), 475–481.

Pokarzhevskii, A. D. (1996). The problem of scale in bioindication of soil contamination. In: Krivolutsky, D. A., & van Straalen, N. M. (Eds.). Bioindicator systems for soil pollution. Kluwer Academic Publishers, Dordrecht. Pp. 111–121.

Posch, T., Köster, O., Salcher, M. M., & Pernthaler, J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2(11), 809–813.

Qin, L., Yu, Q., Ai, W., Tang, Y., Ren, J., & Guo, S. (2014). Response of cyanobacteria to low atmospheric pressure. Life Sciences in Space Research, 3, 55–62.

Ramette, A., & Tiedje, J. M. (2007). Biogeography: An emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microbial Ecology, 53(2), 197–207.

Rampelotto, P. H. (2013). Extremophiles and extreme environments. Life, 3(3), 482–485.

Rastogi, R. P., Madamwar, D., & Incharoensakdi, A. (2015). Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Frontiers in Microbiology, 6, 1254.

Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge University, Cambridge, UK.

Reynolds, C. S., Huszar, V., Kruk, C., Naselliflores, L., & Melo, S. T. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428.

Rodrigues, L. C., Pivato, B. M., Vieira, L. C. G., Bovo-Scomparin, V. M., Bortolini, J. C., Pineda, A., & Train, S. (2018). Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: A case study in a reservoir of Central Brazil. Hydrobiologia, 805(1), 147–161.

Santana, L. M., Crossetti, L. O., & Ferragut, C. (2017). Ecological status assessment of tropical reservoirs through the assemblage index of phytoplankton functional groups. Revista Brasileira de Botanica, 40(3), 695–704.

Sattler, T., Borcard, D., Arlettaz, R., Bontadina, F., Legendre, P., Obrist, M. K., & Moretti, M. (2010). Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology, 91(11), 3343–3353.

Shi, Y., Grogan, P., Sun, H., Xiong, J., Yang, Y., Zhou, J., & Chu, H. (2015). Multi-scale variability analysis reveals the importance of spatial distance in shaping arctic soil microbial functional communities. Soil Biology and Biochemistry, 86, 126–134.

Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7, 529.

Smith, T. W., & Lundholm, J. T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33(4), 648–655.

Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221(4611), 669–671.

Sokolov, S. G., & Zhukov, A. V. (2017). Functional diversity of a parasite assemblages of the Chinese sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae) and habitat structure of the host. Biology Bulletin, 44(3), 331–336.

Sommer, U., Gliwicz, Z. M., Lampert, W., & Duncan, A. K. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Fur Hydrobiologie, 86, 433–471.

Spicer, J., & Gaston, K. (2009). Physiological diversity : Ecological implications. John Wiley & Sons.

Ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological Research, 18(C), 271–317.

Tonkin, J. D., Heino, J., Sundermann, A., Haase, P., & Jähnig, S. C. (2016). Context dependency in biodiversity patterns of central German stream metacommunities. Freshwater Biology, 61(5), 607–620.

Van Der Gucht, K., Cottenie, K., Muylaert, K., Vloemans, N., Cousin, S., Declerck, S., Jeppesen, E., Conde-Porcuna, J. M., Schwenk, K., Zwart, G., Degans, H., Vyverman, W., & De Meester, L. (2007). The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20404–20409.

van Gremberghe, I., Leliaert, F., Mergeay, J., Vanormelingen, P., van der Gucht, K., Debeer, A. E., Lacerot, G., de Meester, L., & Vyverman, W. (2011). Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One, 6(5), 19561.

Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., & Wangikar, P. P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 184, 363–372.

Vinigradova, O. (2012). Cyanoprokaryota in hyperhaline ecosystems of Ukraine. Alterpres, Kyiv.

Vinogradova, O. M. (2006). Cyanoprocaryota in hypergaline habitats and their adaptation strategies. Ukrainian Phytocenological Collection, 24, 33–44.

Vinogradova, O., & Bryantseva, Y. (2017). Taxonomic revision of the species com­position of Cyanobacteria/Cyanoprokaryota of the Ukrainian coast of the Black Sea. Algologia, 27(4), 436–457.

Vorovka, V. P. (2011). Landscape diversity of the Priazovk National Nature Park. Bulletin of the Donetsk Institute of Social Education, 7(7), 24–27.

Wagner, C., & Adrian, R. (2009). Cyanobacteria dominance: Quantifying the effects of climate change. Limnology and Oceanography, 54(6), 2460–2468.

Walter, J. M., Lopes, F. A. C., Lopes-Ferreira, M., Vidal, L. M., Leomil, L., Melo, F., de Azevedo, G. S., Oliveira, R. M. S., Medeiros, A. J., Melo, A. S. O., De Rezende, C. E., Tanuri, A., & Thompson, F. L. (2018). Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Frontiers in Microbiology, 9, 176.

Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.

Whitaker, R. J. (2006). Allopatric origins of microbial species. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1475), 1975–1984.

Whitaker, R. J., Grogan, D. W., & Taylor, J. W. (2003). Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science, 301(5635), 976–978.

Wiedner, C., Nixdorf, B., Heinze, R., Wirsing, B., Neumann, U., & Weckesser, J. (2002). Regulation of cyanobacteria and microcystindynamics in polymictic shallow lakes. Archiv Für Hydrobiologie, 155(3), 383–400.

Yao, L., Zhao, X., Zhou, G. J., Liang, R., Gou, T., Xia, B., Li, S., & Liu, C. (2020). Seasonal succession of phytoplankton functional groups and driving factors of cyanobacterial blooms in a subtropical reservoir in South China. Water (Switzerland), 12(4), 1167.

Yatagai, F., & Ishioka, N. (2014). Are biological effects of space radiation really altered under the microgravity environment? Life Sciences in Space Research, 3, 76–89.

Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29–45.

Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekologia Bratislava, 38(1), 1–10.

Zhang, C. C., Zhou, C. Z., Burnap, R. L., & Peng, L. (2018). Carbon/nitrogen metabolic balance: Lessons from Cyanobacteria. Trends in Plant Science, 23(12), 1116–1130.

Zhang, M., Qin, B., Yu, Y., Yang, Z., Shi, X., & Kong, F. (2016). Effects of temperature fluctuation on the development of cyanobacterial dominance in spring: Implication of future climate change. Hydrobiologia, 763(1), 135–146.

Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301–327.

Zohary, T., & Breen, C. M. (1989). Environmental factors favouring the formation of Microcystis aeruginosa hyperscums in a hypertrophic lake. Hydrobiologia, 178(3), 179–192.

Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulloa, O., & Scanlan, D. J. (2008). Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitio­ning of lineages among oceanic biomes. Environmental Microbiology, 10(1), 147–161.