Antibiofilm forming, antimicrobial activity and some biochemical properties of Vaccinium vitis idaea leaf and berry extracts on Staphylococcus aureus

  • M. V. Kryvtsova Uzhhorod National University
  • I. Salamon University of Prešov
  • J. Koscova University of Veterinary Medicine and Pharmacy in Košice
  • M. Y. Spivak D. K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine
Keywords: antimicrobial activity; antibiofilm formation; lingonberry extract; opportunistic bacteria.


Infections caused by Staphylococcus genus bacteria remain a relevant problem due to the high percentage of antibio­tic-resistant biofilm-forming strains of isolates of this genus. Herbs are a promising source for many biologically active compounds with antimicrobial properties. The aim of the research was to study the antimicrobial and antibiofilm formation activity of berry and leaf extracts of Vaccinium vitis-idaea L. upon clinical isolates of S. aureus, and the main biochemical properties of these extracts. For the purpose of analysis, we used S. aureus isolated from the mouth cavities and pharynx of human patients suffering from inflammatory diseases. The plants for the study were gathered in Pylypets, Mizhhiria rayon, Zakarpatska oblast (Transcarpathia). From Vaccinium vitis-idaea L., leaf and berry extracts were produced. To determine the chemical properties of the extracts, the following constituents were investigated: total tannin, flavonoids, total phenols, anthocyanins (by spectrophotometric method), and the total amount of vitamin C in berry extract (chromatographically). The antimicrobial activity was studied by diffusion-into-agar method and determination of minimum inhibitory concentrations. The antibiofilm activity of the extracts was tested in standard 96-well microtitration plates. The main chemical composition of ethyl extracts of Vaccinium vitis-idaea L. berries and leaves was identified. The level of tannins in leaf extracts was established to be higher than in fruit extracts (3.50% and 0.26% per 100 g of extract, respectively). It was shown that extracts of V. vitis-idaea berries and leaves demonstrate high antimicrobial activity against clinical isolates of S. aureus. Further it was established that leaf extracts had high ability to destroy the bacterial biofilm of S. aureus. Leaf extracts were also able to destroy the formed biofilm. Even in the 0.01% concentration, leaf extract inhibited the formation of the biofilm by 69.9% and caused the destruction of the formed biofilm by 62.5%. Thereby, the obtained results show good prospects for the use of V. vitis-idaea leaf extracts as an anti-staphylococcal remedy with antibiofilm forming properties.


Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79.

Belbase, A., Pant, N. D., Nepal, K., Neupane, B., Baidhya, R., Baidya, R., & Lekhak, B. (2017). Antibiotic resistance and biofilm production among the strains of Sta­phylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal. Annals of Clinical Microbiology and Antimicrobials, 16(1), 15.

Bhullar, K. S., & Rupasinghe, H. P. (2015). Antioxidant and cytoprotective properties of partridgeberry polyphenols. Food Chemistry, 168, 595–605.

Cowan, M. (1999). Plant products as anti-microbial agents. Clinical Microbiology Reviews, 12, 564–582.

Deyno, S., Toma, A., Worku, M., & Bekele, M. (2017). Antimicrobial resistance profile of Staphylococcus aureus isolates isolated from ear discharges of patients at University of Hawassa comprehensive specialized hospital. BMC Pharmacology and Toxicology, 18(1), e28506250.

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193.

Fey, P. D., & Olson, M. E. (2010). Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiology, 5(6), 917–933.

Fontaine, B. M., Nelson, K., Lyles, J. T., Jariwala, P. B., García-Rodriguez, J. M., Quave, C. L., & Weinert, E. E. (2017). Identification of ellagic acid rhamnoside as a bioactive component of a complex botanical extract with anti-biofilme activity. Frontiers in Microbiology, 8, e496.

Galvão, M. A., Arruda, A. O, Bezerra, I. C., Ferreira, M. R., & Soares, L. A. (2018). Evaluation of the Folin-Ciocalteu method and quantification of total tannins in stem barks and pods from Libidibia ferrea (Mart. ex Tul) L. P. Queiroz. Brazilian Archives of Biology and Technology, 61, e1817058.

Ganjiwale, R., Wadher, S., Yeole, P., & Polshettiwar, S. (2007). Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian Journal of Pharmaceutical Sciences, 69(4), 574.

Ginovyan, M., Petrosyan, M., & Trchounian, A. (2017). Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complementary and Alternative Medicine, 17(1), 50.

Hayashi, S., Funatogawa, K., & Yoshikazu, H. (2008). Antibacterial effects of tannins in childrens and adults. In: Botanical Medicine in Clinical Practice. Chepter 16. University of Arizona, Tucson.

Ho, K. Y., Tsai, C. C., Huang, J. S., Chen, C. P., Lin, T. C., & Lin, C. C. (2001). Anti­microbial activity of tannin components from Vaccinium vitis-idaea L. Journal of Pharmacy and Pharmacology, 53(2), 187–191.

Huber, B., Eberl, L., Feucht, W., & Polster, J. (2003). Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Zeitschrift für Naturforschung, 58, 879–884.

Karcheva-Bahchevanska, D., Lukova, P., Nikolova, M., Mladenov, R., & Iliev, I. (2017). Inhibition effect of Bulgarian lingonberry (Vaccinium vitis-idaea L.) extracts on α-amylase activity. Comptes Rendus de l’Acade'mie Bulgare des Sciences, 72(2), 212–218.

Karpova, Y. A., Khramova, Y. P., & Fershalov, T. D. (2009). Flavonoids and ascorbic acid in some representatives of Begonia L. genus. Khimiya Rastitelnogo Syria, 2, 105–110.

Koolen, H. H. F., Silva, F. M. A., Gozzo, F. C., Souza, A. Q. L., & de Souza, A. D. L. (2013). Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa l. f.) by UPLC–ESI-MS/MS. Food Research International, 51(2), 467–473.

Lahiri, D., Dash, S., Dutta, R., & Nag, M. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44(52), 1–19.

Laslo, É., & Kobolkuti, Z. A. (2017). Total phenol content and antimicrobial activity of lingonberry (Vaccinium vitis-idaea L.) from several areas in the Eastern Carpathians. Notulae Scientia Biologicae, 9(1), 77–83.

Logvinova, Y. Y., Brezhneva, T. A., & Slivkin, A. I. (2015). Determination of orga­nic acids in black chokeberry fruit. Scientific Bulletin of the Belarusian State University, Series Medicine, Pharmacy, 10(207), 190–195.

Medini, F., Fellah, H., Ksouri, R., & Abdelly, C. (2014). Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science, 8(3), 216–224.

Nazzaro, F., Fratianni, F., & Coppola, R. (2013). Quorum sensing and phytochemicals. International Journal of Molecular Sciences, 14(6), 12607–12619.

Nikaido, H., & Pagès, J. M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiology Reviews, 36(2), 340–363.

Nikolaidis, I., Favini-Stabile, S., & Dessen, A. (2014). Resistance to antibiotics targe­ted to the bacterial cell wall. Protein Science, 23(3), 243–259.

O’Toole, G. A. (2011). Microtiter dish biofilm formation assay. Journal of Visualized Experiments, 2011, 47.

Patel, J. D., Colton, E., Ebert, M., & Anderson, J. M. (2012). Gene expression during S. epidermidis biofilm formation on biomaterials. Journal of Biomedical Materials Research Part A, 100(11), 2863–2869.

Pérez-Chaparro, P. J., Gonçalves, C., Figueiredo, L. C., Faveri, M., Lobão, E., Tamashiro, N., Duarte, P., & Feres, M. (2014). Newly identified pathogens associated with periodontitis: A systematic review. Journal of Dental Research, 93(9), 1–13.

Plata, K., Rosato, A. E., & Wegrzyn, G. (2009). Staphylococcus aureus as an infectious agent: Overview of biochemisrtry and molecular genetics of its pathogenicity. Acta Biochimica Polonica, 56(4), 597–612.

Poorva, V., Nicholas, H. C., Abir, U., Igamberdiev, & Debnath, S. C. (2015). Antioxidant properties of lingonberry (Vaccinium vitis-idaea L.) leaves within a set of wild clones and cultivars. Canadian Journal of Plant Science, 95(4), 663–669.

Pottinger, P. S. (2013). Methicillin-resistant Staphylococcus aureus infections. Medical Clinics of North America, 97(4), 601–619.

Power Coombs, M. R., Kronforst, K., & Levy, O. (2013). Neonatal host defense against staphylococcal infections. Clinical and Developmental Immunology, 2013, 1–9.

Quave, C. L., Estévez-Carmona, M., Compadre, C. M., Hobby, G., Hendrickson, H., Beenken, K. E., & Smeltzer, M. S. (2012). Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve res­ponse to antibiotics. PLoS One, 7, 1–16.

Raut, J. S., Shinde, R. B., Chauhan, N. M., & Karuppayil, S. M. (2014). Phenylpropanoids of plant origin as snhibitors of biofilm formation by Candida albicans. Journal of Microbiology and Biotechnology, 24(9), 1216–1225.

Riihinen, K. R., Ou, Z. M., Gödecke, T., Lankin, D. C., Pauli, G. F., & Wu, C. D. (2014). The antibiofilm activity of lingonberry flavonoids against oral pathogens is a case connected to residual complexity. Fitoterapia, 97, 78–86.

Romanova, Y. M., & Gintsburg, A. L. (2011). Bacterial biofilms as natural form of bacterial existence in the environment and host organism. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 3, 99–109 (in Russian).

Sánchez, E., Rivas Morales, C., Castillo, S., Leos-Rivas, C., García-Becerra, L., & Ortiz Martínez, D. M. (2016). Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evidence-Based Complementary and Alternative Medicine, 2016, 1–8.

Sandasi, M., Leonard, C. M., Van Vuuren, S. F., & Viljoen, A. M. (2011). Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. South African Journal of Botany, 77(1), 80–85.

Sidashenko, O. I., Voronkova, O. S., Sirokvasha, O. A., & Vinnikov, A. I. (2015). Exhibition pathogenicity factors in biofilm forming and nobiofilm forming strains of Staphylococcus epidermidis. Mikrobiolohichnyi Zhurnal, 77(2), 33–37.

Vernigorova, M. N., & Buzuk, G. N. (2019). Сhromatodensitometric study of the common lingonberry leaves (Vaccinium vitis-idaea L.). Vestnik of Vitebsk State Medical University, 18(5), 107–113.

Vronska, L. V. (2018). Development of spectrophotometric methods for assessment of flavonoids in billbery shoots. Farmatsevtychnyi Chasopys, 4, 49–56.

Wang, S. Y., Feng, R., Bowman, L., Penhallegon, R., & Ding, M. (2005). Antioxidant activity in lingonberries inhibits activator protein 1, nuclear factor-kappab, and mitogen-activated protein kinases. Agriculture and Food Chemistry, 53, 3156–3166.

Wojnicz, D., Kucharska, A. Z., Sokół-Łętowska, A., Kicia, M., & Tichaczek-Goska, D. (2012). Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urological Research, 40(6), 683–697.