Local industrial pollution induces astrocyte cytoskeleton rearrangement in the dice snake brain: GFAP as a biomarker

  • V. Y. Gasso Oles Honchar Dnipro National University
  • A. N. Hahut Oles Honchar Dnipro National University
  • S. V. Yermolenko Oles Honchar Dnipro National University
  • I. A. Hasso Oles Honchar Dnipro National University
  • C. A. Agca Bingöl University
  • E. V. Sukharenko Kerch State Maritime Technological University
  • V. S. Nedzvetsky Bingöl University
Keywords: glial fibrillary acidic protein; oxidative stress; molecular sentinel; environmental contamination; reptile


The present study was designed to evaluate the responsiveness of modulation of glial fibrillary acidic protein (GFAP) content and its fragmentation in the snake brain as a biomarker of local industrial pollution of aquatic ecosystems. Despite GFAP being a well known cytoskeleton marker of astrocytes’ reactivity in the brain of vertebrates, its expression in the snake brain remains insufficiently described. The GFAP expression and its fragmentation were detected using the immunoblot method in the snake brain. ROS level was determined with dichlorofluorescein diacetate fluorescence. The content of the glial fibrillary acidic protein (GFAP) of filament (cytoskeleton) and soluble (cytosol) fractions in the brain of dice snake Natrix tessellata from three ecosystems with different rates of industrial pollution were studied (two polluted and one clean control site). Characteristic increase in GFAP fragmentation was noted for the snakes from both the researched polluted sites. Significant increase in the content of the GFAP cleaved polypeptide fragments induced by industrial pollution exposure was confirmed in the snakes’ brains. Meaningful GFAP fragmentation was determined in snake brain astrocytes as an increase in cleaved fragments of 47–35 kDa molecular weight for both soluble and cytoskeletal GFAP fractions. We found significant abnormality in the ratio of the GFAP soluble fraction to the cytoskeletal one in contaminant-exposed dice snakes. It should testify to significant metabolic disturbance in nerve cells of the dice snakes. Furthermore, growth of reactive oxygen species level as the main cause of oxidative stress was determined in brains of the snakes exposed to environmental toxicity. Thus, astrocyte cytoskeleton disorders are associated with pollutant-induced redox imbalance in the snake brain. Despite the limited data on glial cell biology in the reptilian brain, the observed results prove that snake astrocytes can respond to the environmental toxicity using typical astroglial response. The presented results evidence that monitoring of molecular characteristics of glial cytoskeleton in dice snakes could be used as reliable biomarker of neurotoxicity and adverse effects of industrial pollution. Further studies are required to elucidate the role of astrocyte cytoskeleton in the response against neurotoxic contaminants.


Aebi, U., Häner, M., Troncoso, J., Eichner, R., & Engel, A. (1988). Unifying principles in intermediate filament (IF) structure and assembly. Protoplasma, 145(2–3), 73–81.

Barker, J. R., & Tingey, D. T. (Eds). (1992). Air pollution effects on biodiversity. Springer US, New York.

Baxter, P. S., & Hardingham, G. E. (2016). Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radical Biology and Medicine, 100, 147–152.

Baydas, G., Reiter, R. J., Nedzvetskii, V. S., Yaşar, A., Tuzcu, M., Ozveren, F., & Canatan, H. (2003). Melatonin protects the central nervous system of rats against toluene-containing thinner intoxication by reducing reactive gliosis. Toxicology Letters, 137(3), 169–174.

Block, M. L., & Calderón-Garcidueñas, L. (2009). Air pollution: Mechanisms of neu­roinflammation and CNS disease. Trends in Neurosciences, 32(9), 506–516.

Bolaños, J. P. (2016). Bioenergetics and redox adaptations of astrocytes to neuronal activity. Journal of Neurochemistry, 139(2), 115–125.

Bulakhov, V. L., Gasso, V. Y., & Pakhomov, A. Y. (2007). Biolohichne riznomanittia Ukrainy. Dnipropetrovska oblast. Zemnovodni ta plazuny (Amphibia et Reptilia) [Biological Diversity of Ukraine. The Dnipropetrovsk region. Amphibians and Reptiles (Amphibia et Reptilia)]. Dnipropetrovsk National University, Dnipropetrovsk (in Ukrainian).

Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richard­son, J. S., Bolpagni, R., Borrini, A., Cid, N., Ctvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Di Cicco, M., Fiasca, B., Hamilton, P. B., Kubečka, J., Segadelli, S., & Znachor, P. (2020). Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water, 12(1), 260.

Chen, M. H., Hagemann, T. L., Quinlan, R. A., Messing, A., & Perng, M. D. (2013). Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN Neuro, 5(5), e00125.

Chiu, S. Y., & Kriegler, S. (1994). Neurotransmitter-mediated signaling between axons and glial cells. Glia, 11(2), 191–200.

Choban, A. F., & Choban, S. Y. (2009). Otsinka vplyvu stichnyh vod TES na pryrodni vodni ob’ekty [Estimation of the impact of TPS sewage on natural water objects]. Ecology of the Environment and Safety of Life, 4, 52–58 (in Ukrainian).

Clements, W. H., & Rohr, J. R. (2009). Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environmental Toxicology and Chemistry, 28(9), 1789–1800.

David, J. P., Ghozali, F., Fallet-Bianco, C., Wattez, A., Delaine, S., Boniface, B., Di Menza, C., & Delacourte, A. (1997). Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neuroscience Letters, 235(1–2), 53–56.

Eng, L. F., Ghirnikar, R. S., & Lee, Y. L. (2000). Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochemical Research, 25(9–10), 1439–1451.

Gasso, V. Y. (2011). Kharakterystyka populiatsii zvychainoho vuzha lisovykh bio­heotsenoziv Prysamaria [Grass snake populations’ features of the forest biogeocoenoses in the Samara river area]. Visnyk of Dnipropetrovsk University, Bio­logy, Ecology, 19(2), 136–142 (in Ukrainian).

Gasso, V. Y., Hahut, A. M., & Yermolenko, S. V. (2016). Biokhimichni pokaznyky krovi zvychainoho vuzha (Natrix natrix) z ekosystem iz riznym stupenem antropohennoho navantazhennia [Biochemical parameters in the blood of grass snakes (Natrix natrix) in ecosystems under varying degrees of anthropogenic influence]. Visnyk of Dnipropetrovsk University, Biology, Medicine, 7(2), 127–131 (in Ukrainian).

Gasso, V. Y., Klymenko, E. Y., & Nedzvetsky, V. S. (2010). Sostoianie cytoskeletnyh molekuliarnyh komponentov mozga prytkoj yashcheritsy kak biomarker narushenij, indutsyrovannyh promyshlennym zagriazneniem [Cytoskeleton molecular components of the sand lizard’s brain as a biomarker of disorders induced by industrial pollution]. Ecology and Noospherology, 21(1–2), 98–104 (in Russian).

Gasso, V. Y., Klymenko, О. Y., Sukharenko, H. V., & Nedzvetsky, V. S. (2012). Otsenka negativnogo effekta zagriazneniia biogeocenozov s ispol’zovaniem neirospetsificheskogo cytoskeletnogo belka prytkoj yashcheritsy [Assessment of negative effect of the biogeocoenoses pollution with the use of neurospecific cytoskeletal protein of the sand lizard]. Ecology and Noospherology, 23, 58–66 (in Russian).

Gray, B. C., Skipp, P., O’Connor, V. M., & Perry, V. H. (2006). Increased expression of glial fibrillary acidic protein fragments and mu-calpain activation within the hippocampus of prion-infected mice. Biochemical Society Transactions, 34, 51–54.

Gupta, D., Crosby, M. E., Almasan, A., & Macklis, R. M. (2008). Regulation of CD20 expression by radiation-induced changes in intracellular redox status. Free Radical Biology and Medicine, 44(4), 614–623.

Hall, Z. J., & Tropepe, V. (2020). Using teleost fish to discern developmental signatures of evolutionary adaptation from phenotypic plasticity in brain structure. Frontiers in Neuroanatomy, 14, 10.

Hol, E. M., & Pekny, M. (2015). Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Current Opinion in Cell Biology, 32, 121–130.

Kaas, J. H. (2016). Evolution of nervous systems. Academic Press, Cambridge.

Kálmán, M., & Pritz, M. B. (2001). Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. Journal of Comparative Neurology, 431(4), 460–480.

Kálmán, M., & Szabó, A. (2001). Immunohistochemical investigation of actin-anchoring proteins vinculin, talin and paxillin in rat brain following lesion: A moderate reaction, confined to the astroglia of brain tracts. Experimental Brain Research, 139(4), 426–434.

Kendall, R. J. (2016). Wildlife toxicology: Where we have been and where we are going, Journal of Environmental and Analytical Toxicology, 6(1), 348.

Kim, H. Y., Kim, H. R., Kang, M. G., Trang, N. T. D., Baek, H. J., Moon, J. D., Shin, J.-H., Suh, S.-P., Ryang, D.-W., Kook, H., & Shin, M. G. (2014). Profi­ling of biomarkers for the exposure of polycyclic aromatic hydrocarbons: lamin-A/C isoform 3, poly[ADP-ribose] polymerase 1, and mitochondria copy number are identified as universal biomarkers. Biomed Research International, 2014, 605135.

Kirici, M., Nedzvetsky, V. S., Agca, C. A., & Gasso, V. Y. (2019). Sublethal doses of copper sulphate initiate deregulation of glial cytoskeleton, NF-kB and PARP expression in Capoeta umbla brain tissue. Regulatory Mechanisms in Biosystems, 10(1), 103–110.

Klymenko, O. Y., & Gasso, V. Y. (2009). Aktyvnist transaminaz u syrovattsi krovi prudkoi yashchirky pid vplyvom promyslovoho zabrudnennia [Transamina­ses activity in the sand lizard’s serum under influence of industrial pollution]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 17(1), 100–105 (in Ukrainian).

Kroik, H. A., & Patskova, Y. L. (2011). Otsinka ekolohichnoho stanu pryrodnykh vod v zoni diyi Prydniprovskoyi TES [Estimation of the ecological state of na­tural waters in the zone of operation of Prydniprovska TPS]. Visnyk of Dnipropetrovsk University, Geology, Geography, 13(1), 53–61 (in Ukrainian).

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

Legradi, J. B., Di Paolo, C., Kraak, M. H. S., Van der Geest, H. G., Schymanski, E. L., Williams, A. J., Dingemans, M. M. L., Massei, R., Brack, W., Cousin, X., Begout, M.-L., Van der Oost, R., Carion, A., Suarez-Ulloa, V., Silvestre, F., Escher, B. I., Engwall, M., Nilén, G., Keiter, S. H., Pollet, D., Waldmann, P., Kienle, C., Werner, I., Haigis, A.-C., Knapen, D., Vergauwen, L., Spehr, M., Schulz, W., Busch, W., Leuthold, D., Scholz, S., Vom Berg, C. M., Basu, N., Murphy, C. A., Lampert, A., Kuckelkorn, J., Grummt, T., & Hollert, H. (2018). An ecotoxicological view on neurotoxicity assessment. Environmental Sciences Europe, 30(1), 46.

Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodi­um benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591–597.

Lieshchova, M. A., Brygadyrenko, V. V., Tishkina, N. M., Gavrilin, P. M., & Bo­homaz, A. A. (2019). Impact of polyvinyl chloride, polystyrene, and poly­ethylene on the organism of mice. Regulatory Mechanisms in Biosystems, 10(1), 50–55.

Lohren, H., Blagojevic, L., Fitkau, R., Ebert, F., Schildknecht, S., Leist, M., & Schwerdtle, T. (2015). Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes. Journal of Trace Elements in Medicine and Biology, 32, 200–208.

Lorincz, D., & Kálmán, M. (2015). Advances of Squamata astroglia to other reptiles: Numerous astrocytes and glial fibrillary acidic protein (GFAP)-free areas. A preliminary study. Acta Biologica Szegediensis, 59(3), 353–360.

Lucchini, R. G., Dorman, D. C., Elder, A., & Veronesi, B. (2012). Neurological im­pacts from inhalation of pollutants and the nose-brain connection. Neurotoxico­logy, 33(4), 838–841.

Malik, M. G. (2010). Vykorystannia hlialnoho fibryliarnoho kysloho bilka mozku ryb u diahnostytsi stanu pryrodnoho seredovyshcha [Use of glial fibrillary acidic protein extracted from the fish brain in diagnostics of the environment state]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 18(1), 92–97 (in Ukrainian).

Miksík, I., & Deyl, Z. (1997). Post-translational non-enzymatic modification of pro­teins. II. Separation of selected protein species after glycation and other carbo­nyl-mediated modifications. Journal of Chromatography B: Biomedical Scien­ces and Applications, 699, 311–345.

Miller, D. B., & O’Callaghan, J. P. (2003). Elevated environmental temperature and methamphetamine neurotoxicity. Environmental Research, 92(1), 48–53.

Miller, G. L. (1959). Protein determination of large numbers of samples. Analytical Chemistry, 31(5), 964–964.

Miller, S. J. (2018). Astrocyte heterogeneity in the adult central nervous system. Frontiers in Cellular Neuroscience, 12, 401.

Nedzvetskii, V. S., Nerush, P. A., Tikhomirov, A. A., & Romanenko, L. A. (2001). Effects of ionizing radiation and aluminum chloride on protein of glial intermediate filaments in the rat brain. Neurophysiology, 33, 28–33.

Nedzvetskii, V. S., Tykhomyrov, A. O., Kirichenko, S. V., Koryakina, Z. O., & Lip­ka, M. V. (2005). Vozmozhnosti ispol’zovaniia molekuliarnyh komponentov s tsel’iu sohraneniia biologicheskogo raznoobraziia v usloviiah deistviia neblagopriiatnyh faktorov [The possibilities of use of molecular components to protect biodiversity under influence of harmful factors]. Ecology and Noospherology, 16(3–4), 215–221 (in Russian).

Nedzvetsky, V. S., & Nerush, P. A. (1999). The protein of glial intermediate filaments in different areas of the rat brain at experimental neurosis. Neurophysio­logy, 31(2), 94–97.

Nedzvetsky, V. S., Sukharenko, E. V., Kyrychenko, S. V., & Baydas, G. (2018). Soluble curcumin prevents cadmium cytotoxicity in primary rat astrocytes by improving a lack of GFAP and glucose-6-phosphate-dehydrogenase. Regulatory Mechanisms in Biosystems, 9(4), 501–507.

Nedzvetsky, V. S., Sukharenko, E. V., & Nerush, O. P. (2011). Biologicheskaya i sotsialnaya znachimost ispolzovaniya molekulyarnykh komponentov s tselyu opredeleniya metabolicheskikh narusheniy, vyzvannykh ionami alyuminiya [Biological and social importance of molecular marker investigation for determination of metabolic disease induced by aluminum ions]. Scientific Notes of the Russian State Social University, 92, 192–196 (in Russian).

Nedzvetsky, V. S., Tuzcu, M., Yasar, A., Tikhomirov, A. A., & Baydas, G. (2006). Effects of vitamin E against aluminum neurotoxicity in rats. Biochemistry, 71(3), 239–244.

Newman, M. C., & Clements, W. H. (2007). Ecotoxicology: A comprehensive treat­ment. CRC Press, Boca Raton.

Norenberg, M. D. (1994). Astrocyte responses to CNS injury. Journal of Neuropathology and Experimental Neurology, 53(3), 213–220.

Novitsky, R. A., Malik, M. G., Nedzvetsky, V. S., & Sukharenko, E. V. (2009). Is­polzovaniye tsitoskeletnykh molekulyarnykh komponentov v kachestve biomarkera sostoyaniya gidrobiontov (na primere plotvy obyknovennoy) [Use of cytoskeletal molecular components as biomarker of the hydrobionts state (using common roach as an example)]. Hydrobiological Journal, 45(5), 81–88 (in Russian).

Novitsky, R. A., Sukharenko, E. V., & Nedzvetsky, V. S. (2013). Molekuliarnye bio­markery effektov ionov Al3+ na generaciju oksidativnogo stressa i kletochnuiu reaktivaciiu v organizme Lepomis gibbosus (Pisces: Centrarchidae) [Molecular biomarkers of the effects of Al3+ ions on oxidative stress generation and cell reactivation in Lepomis gibbosus (Pisces: Centrarchidae)]. Hydrobiological Journal, 49(6), 65–75 (in Russian).

Ortega, A., & Olivares-Bañuelos, T. N. (2020). Neurons and glia cells in marine in­vertebrates: An update. Frontiers in Neuroscience, 14, 121.

Peakall, D. B., Walker, C. H., & Migula, P. (1999). Biomarkers: A pragmatic basis for remediation of severe pollution in Eastern Europe. Springer, Berlin.

Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30–38.

Pereira, P., Korbas, M., Pereira, V., Cappello, T., Maisano, M., Canário, J., Almeida, A., & Pacheco, M. (2019). A multidimensional concept for mercury neuronal and sensory toxicity in fish – From toxicokinetics and biochemistry to morphometry and behavior. Biochimica et Biophysica Acta (BBA) – General Subjects, 1863(12), 129298.

Peters, A., Palay, S. L., & Webster, H. de F. (1991). The fine structure of the nervous system: Neurons and their supporting cells. Oxford University Press, New York.

Peterson, E. K., Buchwalter, D. B., Kerby, J. L., Le Fauve, M. K., Varian-Ramos, C. W., & Swaddle, J. P. (2017). Integrative behavioral ecotoxicology: Bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Current Zoology, 63(2), 185–194.

Prychynenko, N. M., Hurkova, O. O., Rozovenko, I. V., Kompaniiets, A. V., Voloshyna, O. M., & Shvachko, O. O. (2017). Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha u Zaporizskii oblasti u 2016 rotsi [Regional report on the state of the environment in Zaporizhia region in 2016]. Zaporizska Oblast State Administration, Zaporizhia (in Ukrainian).

Rai, A., Maurya, S. K., Sharma, R., & Ali, S. (2013). Down-regulated GFAPα: A major player in heavy metal induced astrocyte damage. Toxicology Mecha­nisms and Methods, 23(2), 99–107.

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529.

Sanderfoot, O. V., & Holloway, T. (2017). Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environmental Research Letters, 12(8), 083002.

Schäfer, R. B., & Bundschuh, M. (2018), Ecotoxicology. In: Schmutz, S., & Sendzimir, J. (Eds). Riverine ecosystem management. Aquatic Ecology Series. Springer, Cham. Vol. 8. Pp. 225–239.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.

Smerjac, S. M., Zheng, J., Hu, C. L., & Bizzozero, O. A. (2018). The role of calpain and proteasomes in the degradation of carbonylated neuronal cytoskeletal proteins in acute experimental autoimmune encephalomyelitis. Neurochemical Research, 43(12), 2277–2287.

Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7–35.

Stopnicki, B., Blain, M., Cui, Q. L., Kennedy, T. E., Antel, J. P., Healy, L. M., & Darlington, P J. (2019). Helper CD4 T cells expressing granzyme B cause glial fibrillary acidic protein fragmentation in astrocytes in an MHCII-independent manner. Glia, 67(4), 582–593.

Strilets, R. O. (Ed.) (2017). Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Dnipropetrovskii oblasti za 2016 rik [Regional report on the state of the environment in Dnipropetrovsk region in 2016]. Dnipropetrovska Oblast State Administration, Dnipro (in Ukrainian).

Sukharenko, E. V., Samoylova, I. V., & Nedzvetsky, V. S. (2017). Molecular mechanisms of aluminium ions neurotoxicity in brain cells of fish from various pelagic areas. Regulatory Mechanisms in Biosystems, 8(3), 461–466.

Sukharenko, E. V., Novitsky, R. А., & Nedzvetsky, V. S. (2012). Vykorystannia biomarkeriv mozku donnykh ryb dlia otsinky zabrudnennia kerchenskoi protoky Chornoho moria [Using biomarkers of ground fish brain for pollution assessment of the Kerch strait (the Black Sea)]. Visnyk of Dnipropetrovsk University, Biology, Medicine, 3(2), 81–88 (in Ukrainian).

Tanaka, K. I., & Kawahara, M. (2017). Copper enhances zinc-induced neurotoxicity and the endoplasmic reticulum stress response in a neuronal model of vascular dementia. Frontiers in Neuroscience, 11, 58.

Taysi, M. R., Söğüt, B., Nedzvetsky, V. S., Kirici, M., & Ağca, C. A. (2019). Sublethal doses of inorganic mercury induce dose-depended upregulation of RPA1 content and inhibit p53 expression in the brain of rainbow trout (Oncorhynchus mykiss). Türk Tarım ve Doğa Bilimleri Dergisi, 6(3), 462–476.

Tykhomyrov, A. A., Nedzvetsky, V. S., Klochkov, V. K., & Andrievsky, G. V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology, 246(2–3), 158–165.

Van de Perre, D., Roessink, I., Janssen, C. R., Smolders, E., Van Regenmortel, T., Van Wichelen J., Vyverman, W., Van den Brink, P. J., & De Schamphelaere, K. A. C. (2016). The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environmental Toxicology, 35(11), 2698–2712.

Yang, Z., & Wang, K. K. (2015). Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends in Neurosciences, 38(6), 364–374.

Yermolenko, S. V., Hagut, A. M., & Gasso, V. Y. (2016a). Morphophysiological indices of internal organs of the dice snake Natrix tessellata (Reptilia, Colubridae) of the Dnieper River in the steppe. Zbirnyk Prac Zoologichnogo Muzeju, 47, 20–29.

Yermolenko, S. V., Hahut, A. M., & Gasso, V. Y. (2016b). Izmenchivost morfometricheskih priznakov vodianogo uzha Natrix tessellata (Reptilia, Colubridae) Tsentral’nogo i Yuzhnogo Pridneprov’ia [Variation in morphological characters of the dice snake Natrix tessellata (Reptilia, Colubridae) in the Central and Southern Dnieper River Area]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 526–530 (in Russian).

Yoshikawa, T., & Naito, Y. (2002). What is oxidative stress? Japan Medical Association Journal, 45(7), 271–276.

Zhang, Z., Zoltewicz, J. S., Mondello, S., Newsom, K. J., Yang, Z., Yang, B., Kobeissy, F., Guingab, J., Glushakova, O., Robicsek, S., Heaton, S., Buki, A., Hannay, J., Gold, M. S., Rubenstein, R., Lu, X. C., Dave, J. R., Schmid, K., Tortella, F., Robertson, C. S., & Wang, K. K. (2014). Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One, 9(3), e92698.