Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae)

  • V. M. Kozak Oles Honchar Dnipro National University
  • E. R. Romanenko Dnipro State Agrarian and Economic University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: Myriapoda; glyphosate; Propargite; Mefenoxam; Mancozeb; Dimethoate; Imidacloprid; Pirimiphos-methyl; Chlorpyrifos; Cypermethrin; Tebuconazole; Triadimenol; Spiroxamine; Propiconazole; Cyprodinil.


Pesticides kill organisms harmful for the human organism, sometimes also harming beneficial ones. After treatment, pesticides remain on the soil surface in agrocenoses and adjacent plots for decades. For the laboratory experiment, we selected Rossiulus kessleri (Lochmander, 1927) – a species which lives 5–6 years on the soil surface and can dig in to soil to a depth of 30–40 cm. During a 20-day experiment we used herbicides (Roundup, Urahan Forte), insecticides (Omite, BI 58, Biotlin, Actellic, Nurelle D) and fungicides (Ridomil Gold, Thiovit Jet, Penncozeb 80 WP, Falcon, Tilt, Horus) which are often used in agrocenosises of Ukraine. Under the impact of Roundup and Urahan, body weight of R. kessleri reliably did not change, but food consumption and production of excrement increased. Pesticide-treated litter did not digest in the intestine of millipedes, but they survived to the end of the experiment (20 days). In the conditions of treating litter with insecticides Omite, BI 58, Biotlin, Actellic and Nurelle D, the amount of consumed food and body weight reliably did not change; most of these insecticides slowed the formation of feces in the millipedes. The highest studied concentrations of Actellic and Nurelle D preparations caused death to R. kessleri. Depending on the concentration in the litter, the studied fungicides Ridomil Gold, Thiovit Jet, Penncozeb, Falcon, Tilt, Horus had a varying effect on food consumption, body weight and the amount of excrement of R. kessleri. Thus, in agrocenoses and forest ecosystems adjacent to them (windbreaks, ravine and flood plain forests), R. kessleri can be significantly affected by the manufacturer-recommended doses of pesticides, as well as more than ten-fold lower doses.


Adamski, Z., Bloszyk, J., Bruin, J., & Ziemnicki, K. (2007). Non-omnia moriantur – toxicity of mancozeb on dead wood microarthropod fauna. Experimental and Applied Acarology, 42(1), 47–53.

Attems, C. M. T. graf von (1927). Über Palaearktische Diplopoden. Archiv für Naturgeschichte, 92(1–2), 1–256.

Birkhofer, K., Dietrich, C., John, K., Schorpp, Q., Zaitsev, A. S., & Wolters, V. (2016). Regional conditions and land-use alter the potential contribution of soil arthropods to ecosystem services in grasslands. Frontiers in Ecology and Evolution, 3, 150.

Brygadyrenko, V. V. (2015). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192.

Brygadyrenko, V. V. (2016). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90–102.

Brygadyrenko, V. V., & Svyrydchenko, A. O. (2015). Influence of the gregarine Stenophora julipusilli (Eugregarinorida, Stenophoridae) on the trophic activity of Rossiulus kessleri (Diplopoda, Julidae). Folia Oecologica, 42(1), 10–20.

Brygadyrenko, V., & Ivanyshyn, V. (2015). Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper. Journal of Forest Science, 61(9), 369–376.

Byzov, B. A. (2006). Intestinal microbiota of millipedes. In: König, H., & Varma, A. (Eds.). Intestinal microorganisms of termites and other invertebrates. Springer, Berlin. Pp. 89–114.

De Souza, R. B., Moreira-de-Sousa, C., Ansoar-Rodríguez, Y., Coelho, M. P. M., de Souza, C. P., Bueno, O. C., & Fontanetti, C. S. (2019). Histopatology and HSP70 analysis of the midgut of Rhinocricus padbergi (Diplopoda) in the eva­luation of the toxicity of two new metallic-insecticides. Environmental Science and Pollution Research, 27(3), 3023–3033.

Douglas, J., Hoffmann, A., Umina, P., & Macfadyen, S. (2019). Factors influencing damage by the portuguese millipede, Ommatoiulus moreleti (Julida: Julidae), to crop seedlings. Journal of Economic Entomology, 112(6), 2695–2702.

Douglas, J., Macfadyen, S., Hoffmann, A., & Umina, P. (2017). Crop seedling susceptibility to Armadillidium vulgare (Isopoda: Armadillidiidae) and Ommatoiulus moreletii (Diplopoda: Iulidae). Journal of Economic Entomology, 110(6), 2679–2685.

Ebregt, E., Struik, P. C., Odongo, B., & Abidin, P. E. (2005). Pest damage in sweet potato, groundnut and maize in North-Eastern Uganda with special reference to damage by millipedes (Diplopoda). NJAS - Wageningen Journal of Life Sciences, 53(1), 49–69.

Evsyukov, A. P., & Golovatch, S. I. (2013). Millipedes (Diplopoda) from the Rostov-on-Don Region, Southern Russia. Arthropoda Selecta, 22(3), 207–215.

Gere, G. (1956). Examination of the feeding biology and humification function of Diplopoda and Isopoda. Acta Biologica Hungarica, 6, 257–271.

Golovatch, S. I. (2008). On three remarkable millipedes (Diplopoda) from the Crimea, Ukraine. International Journal of Myriapodology, 1, 97–110.

Golovatch, S. I., & Kime, R. D. (2009). Millipede (Diplopoda) distributions: A review. Soil Organisms, 81(3), 565–597.

Goßner, M., Engel, K., & Ammer, U. (2006). Effects of selection felling and gap felling on forest arthropod communities: A case study in a spruce-beech stand of Southern Bavaria. European Journal of Forest Research, 125(4), 345–360.

Guzev, V. S., & Byzov, B. A. (2006). Morphometric analysis of bacteria associated with soil millipedes. Microbiology, 75(2), 219–225.

Hopkin, S. P. (1990). Critical concentrations, pathways of detoxification and cellu­lar ecotoxicology of metals in terrestrial arthropods. Functional Ecology, 4(3), 321–327.

Jabin, M., Mohr, D., Kappes, H., & Topp, W. (2004). Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. Forest Ecology and Management, 194, 61–69.

Kaneko, N. (1999). Effect of millipede Parafontaria tonominea Attems (Diplopoda: Xystodesmidae) adults on soil biological activities: A microcosm experiment. Ecological Research, 14(3), 271–279.

Kokhia, M. S., & Golovatch, S. I. (2020). Diversity and distribution of the millipedes (Diplopoda) of Georgia, Caucasus. ZooKeys, 930, 199–219.

Kozak, V. M., & Brygadyrenko, V. V. (2018). Impact of cadmium and lead on Megaphyllum kievense (Diplopoda, Julidae) in a laboratory experiment. Biosystems Diversity, 26(2), 128–131.

Lohmander, H. (1927). Schizophyllum kessleri n. sp., ein neuer Diplopode aus Südwestrußland. Zoologischer Anzeiger, 72(9–10), 225–230.

Martynov, V. O., & Brygadyrenko, V. V. (2017). The influence of synthetic food additives and surfactants on the body weight of larvae of Tenebrio molitor (Coleoptera, Tenebrionidae). Biosystems Diversity, 25(3), 236–242.

Martynov, V. O., & Brygadyrenko, V. V. (2018a). The impact of some inorganic substances on change in body mass of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae in a laboratory experiment. Folia Oecologica, 45(1), 24–32.

Martynov, V. O., & Brygadyrenko, V. V. (2018b). The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae. Regulatory Mechanisms in Biosystems, 9(4), 479–484.

Moreira-de-Sousa, C., Iamonte, M., & Fontanetti, C. S. (2017). Midgut of the diplopod Urostreptus atrobrunneus: Structure, function, and redefinition of hepatic cells. Brazilian Journal of Biology, 77(1), 132–139.

Pardon, P., Reheul, D., Mertens, J., Reubens, B., De Frenne, P., De Smedt, P., Proesmans, W., Van Vooren, L., & Verheyen, K. (2019). Gradients in abundance and diversity of ground dwelling arthropods as a function of distance to tree rows in temperate arable agroforestry systems. Agriculture, Ecosystems and Environment, 270–271, 114–128.

Prisnyi, A. V. (2002). A review of the millipede fauna of the south of the Middle-Russian upland, Russia (Diplopoda). Arthropoda Selecta, 10, 297–305.

Relyea, R. A. (2005). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications, 15(2), 618–627.

Reshetniak, D. Y., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Possibility of identifying plant components of the diet of Harpalus rufipes (Coleoptera, Carabidae) by visual evaluation. Regulatory Mechanisms in Biosystems, 8(3), 377–383.

Shulman, M. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecologica, 44(1), 28–37.

Striganova, B. R. (1972). Effect of temperature on the feeding activity of Sarmatiulus kessleri (Diplopoda). Oikos, 23(2), 197–199.

Striganova, B. R., & Prishutova, Z. G. (1990). Food requirements of diplopods in the dry steppe subzone of the USSR. Pedobiologia, 34, 37–41.

Svyrydchenko, A. O., & Brygadyrenko, V. V. (2014). Trophic preferences of Rossiulus kessleri (Diplopoda, Julidae) for the litter of various tree species. Folia Oecologica, 41(2), 202–212.

Tóth, Z., & Hornung, E. (2019). Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects, 11(1), 25.


Most read articles by the same author(s)

> >>