Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants

  • V. V. Zazharskyi Dnipro State Agrarian and Economic University
  • P. О. Davydenko Dnipro State Agrarian and Economic University
  • O. М. Kulishenko Dnipro State Agrarian and Economic University
  • I. V. Borovik Dnipro State Agrarian and Economic University
  • N. M. Zazharska Dnipro State Agrarian and Economic University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: growth inhibition zone; bacterial colonies; multi-resistant strain; candidosis.


Galenic preparations are broadly used against microorganisms pathogenic to humans, thought their poteintial in this aspect is not studied completely. In our in vitro experiment we studied the influence of alcohol tinctures from 38 species of plants on 15 species of bacteria and one species of fungus. Zones of growth inhibition of colonies measuring over 8 mm were observed during the use of ethanol extracts of Maclura pomifera against eight species of microorganisms (Escherichia сoli, Proteus mirabilis, Serratia marcescens, Yersinia enterocolitica, Salmonella typhimurium, Rhodococcus equi, Campylobacter jejuni and Corynebacterium xerosis), Ginkgo biloba – against eight species (Enterococcus faecalis, S. marcescens, Y. enterocolitica, Klebsiella pneumoniae, Listeria іnnocua, L. monocytogenes, Р. аeruginosa and C. jejuni), Genista tinctoria – against seven species (E. coli, Enterobacter aerogenes, Proteus mirabilis, K. pneumoniae, S. typhimurium, Р. аeruginosa and Rh. equi), Phellodendron amurense – against seven species (E. faecalis, S. marcescens, S. typhimurium, Rh. equi, C. jejunі, C. xerosis and Candida albicans), Berberis vulgaris – against seven species (P. mirabilis, S. marcescens, K. pneumoniae, S. typhimurium, C. jejuni, Р. аeruginosa and C. xerosis), Vitex negundo – against six species (E. faecalis, E. coli, P. mirabilis, K. pneumoniae, S. typhimurium and Rh. equi), Koelreuteria paniculata – against six species (E. faecalis, P. mirabilis, S. marcescens, S. typhimurium, C. jejunі and E. coli), Magnolia kobus – against six species (E. faecalis, E. coli, P. mirabilis, S. marcescens, S. typhimurium, C. jejunі and C. xerosis), Liriodendron tulipifera – against six species (K. pneumoniae, Listeria іnnocua, Р. аeruginosa, C. jejuni, Rh. equi and C. albicans), Clematis flammula – against six species (E. faecalis, P. mirabilis, L. monocytogenes, Р. аeruginosa, C. jejuni and C. xerosis), Wisteria sinensis – against five species (E. coli, S. typhimurium, L. monocytogenes, Rh. equi and C. albicans), Chimonanthus praecox – against five species (E. faecalis, S. marcescens, L. monocytogenes, C. jejuni and Rh. equi), Colchicum autumnale – against five species (S. marcescens, K. pneumoniae, L. ivanovi, L. monocytogenes and Р. аeruginosa). As a result of the study, these plants were found to be the most promising for further study of in vivo antibacterial activity. In the search of antibacterial and antifungal activities, the following plants were observed to be less promising: Ailanthus altissima, Aristolochia manshuriensis, Artemisia absinthium, Callicarpa bodinieri, Campsis radicans, Catalpa duclouxii, Celastrus scandens, Dictamnus alba, Eucommia ulmoides, Geranium sanguineum, Laburnum anagyroides, Nepeta racemosa, Parthenocissus tricuspidata, Polygonatum multiflorum, Prunus dulcis, P. laurocerasus, Ptelea trifoliata, Pteridium aquilinum, Quercus castaneifolia, Q. petraea iberica, Salvia officinalis, Securigera varia, Styphnolobium japonicum, Tamarix elongata and Vitex agnus-castus.


Adami, R., Nayeri, H., & Naderi, G. (2015). Anti-diabetic mechanism of colchicum speciosum hydroalcoholic extract in vitro. International Journal of Biosciences, 6(5), 152–157.

Ai, H.-W. (2014). Antifungal properties and chemical analysis of essential oil from Vitex negundo seeds. British Journal of Pharmaceutical Research, 4(5), 541–548.

Akpulat, H. A., Akpulat, S., Yildirim, E. S., & Enginoğlu, H. R. (2019). Prunus lau­rocerasus (Rosaceae) plant extract with harmful herbs and agricultural frost. Turkish Journal of Biodiversity, 2(1), 18–23.

Albouchi, F., Hassen, I., Casabianca, H., & Hosni, K. (2013). Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) Swingle leaves. South African Journal of Botany, 87, 164–174.

Al-Ghamdi, A. A. M. (2020). Ecological and biochemical studies on Artemisia ab­sinthium in Al-Baha city, Saudi Arabia. Pakistan Journal of Botany, 52(4), 14.

Allen, P. Z. (1985). Interaction of Salmonella telaviv with Maclura pomifera lectin. Infection and Immunity, 47(1), 90–93.

Anzabi, Y. (2018). Biosynthesis of ZnO nanoparticles using barberry (Berberis vul­garis) extract and assessment of their physico-chemical properties and antibacterial activities. Green Processing and Synthesis, 7(2), 114–121.

Bahador, N., & Baserisalehi, M. (2011). The effect of Quercus castaneifolia extract on pathogenic enteric bacteria. Anaerobe, 17(6), 358–360.

Bährle-Rapp, M. (2007). Polygonum multiflorum extract. In: Bahrle-Rapp, M. Sprin­ger Lexikon Kosmetik Und Körperpflege. Springer-Verlag, Berlin, Heidelberg. Pp. 439–439.

Behbahani, M., Shanehsazzadeh, M., Shokoohinia, Y., & Soltani, M. (2013). Eva­luation of anti-herpetic activity of methanol seed extract and fractions of Securigera securidaca in vitro. Journal of Antivirals and Antiretrovirals, 2013, 5, 4.

Bhavani, G., Muthuselvam, P., & Geetha, S. (2013). Synthesis of silver nanoparticles using the leaf extract of Vitex negundo and its antibacterial effect. Advanced Materials Research, 678, 301–305.

Bigos, M., Wasiela, M., Kalemba, D., & Sienkiewicz, M. (2012). Antimicrobial activity of Geranium oil against clinical strains of Staphylococcus aureus. Molecules, 17(9), 10276–10291.

Boyko, A. A., & Brygadyrenko, V. V. (2016a). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 519–525.

Boyko, O. O., Zazharska, N. M., & Brygadyrenko, V. V. (2016b). The influence of the extent of infestation by helminths upon changes in body weight of sheep in Ukraine. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 3–7.

Buzzini, P., & Pieroni, A. (2003). Antimicrobial activity of extracts of Clematis vitalba towards pathogenic yeast and yeast-like microorganisms. Fitoterapia, 74(4), 397–400.

Compton, J. A. (2015). 815. Wisteria sinensis on the slow boat from China: The journey of Wisteria to Еngland. Curtis’s Botanical Magazine, 32, 248–293.

Deogade, M. S., Pandya, T., Prasad, K. S., Kale, K., & Tankhiwale, N. (2016). Anti­microbial activity of Vitex negundo Linn. (Nirgundi) leaves extract. Journal of Research in Traditional Medicine, 2(4), 99–102.

Dharmaratne, H., Jacob, M., Tekwani, B., & Nanayakkara, N. (2013). Antimicrobial and antileishmanial compounds from Maclura pomifera fruits. Planta Medica, 79, PF1.

Geraldes, M., Fonseca, J. P., Neto, C., & Costa, J. C. (2019). New genetic data on Genista anglica L. versus Genista ancistrocarpa Spach (Fabaceae, Fabales) in the Iberian Península and Morocco. Phylogeographic clues. Acta Botanica Malacitana, 39, 45–54.

Gui, R.-Y., Liang, W.-W., Yang, S.-X., Llu, L., & Qin, J.-C. (2014). Chemical com­position, antifungal activity and toxicity of essential oils from the leaves of Chimonanthus praecox located at two different geographical origin. Asian Journal of Chemistry, 26(14), 4445–4448.

Habbab, A., Sekkoum, K., Belboukhari, N., Cheriti, A., & Aboul-Enein, H. Y. (2016). Essential oil chemical composition of Vitex agnus-castus L. from Southern-West Algeria and its antimicrobial activity. Current Bioactive Compounds, 12(1), 51–60.

Han, Y., Xu, L., Wang, Q., Huang, Y., & Meng, W. (2015). Chemical composition, antioxidant and antimicrobial activity of the essential oil of Phellodendron amurense (Rupr.) from China. Asian Journal of Chemistry, 27(3), 841–844.

Hu, Y., Qiao, J., Zhang, X., & Ge, C. (2011). Antimicrobial effect of Magnolia officinalis extract against Staphylococcus aureus. Journal of the Science of Food and Agriculture, 91(6), 1050–1056.

Hufford, C. D., Funderburk, M. J., Morgan, J. M., & Robertson, L. W. (1975). Two antimicrobial alkaloids from heartwood of Liriodendron tulipifera L. Journal of Pharmaceutical Sciences, 64(5), 789–792.

Islam, M., Jannat, T., Kuddus, M. R., Rashid, M. A., & Haque, M. R. (2019). In vitro and in vivo evaluation of pharmacological potentials of Campsis radicans L. Clinical Phytoscience, 5, 42.

Kardong, D., Upadhyaya, S., & Saikia, L. R. (2013). Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. Journal of Pharmacy Research, 6(1), 179–182.

Kavitha, T., Alagusaranya, A., & Nelson, R. (2016). Antimicrobial activity of chloroform extract of Aristolochia bracteata Retz. and analysis of bioactive compounds. International Journal of Current Microbiology and Applied Sciences, 5(3), 559–565.

Khan, M. F., Arora, P., & Dhobi, M. (2019). A prospective review on phyto-pharma­cological aspects of Vitex negundo Linn. Current Traditional Medicine, 2019, in print.

Khan, M., Kihara, M., & Omoloso, A. (2001). Antimicrobial activity of Clematis papuasica and Nauclea obversifolia. Fitoterapia, 72(5), 575–578.

Kumar, V., Singh, S., Singh, A., Dixit, A. K., Shrivastava, B., Kondalkar, S. A., Singh, J., Singh, R., Sidhu, G. K., Singh, R. P., Subhose, V., & Prakash, O. (2018). Determination of phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydroethanolic extract of Celastrus paniculatus. Journal of Applied Biology and Biotechnology, 6(6), 11–17.

Lei, J., Yu, J., Yu, H., & Liao, Z. (2007). Composition, cytotoxicity and antimicrobial activity of essential oil from Dictamnus dasycarpus. Food Chemistry, 107(3), 1205–1209.

Lim, T. K. (2013). Styphnolobium japonicum. In: Lim, T. K. (Ed.). Edible medicinal and non-medicinal plants. Springer, Dordrecht. Pp. 906–924.

Liu, S., Zhao, D., & Han, Y. (2007). An antifungal peptide from the bark of Eucommia ulmoides Oliv. effective against Candida albicans in vitro. International Symposium on Eucommia ulmoides, 1(1), 78–81.

Lopes, A., Pereira, C., & Almeida, A. (2018). Sequential combined effect of phages and antibiotics on the inactivation of Escherichia coli. Microorganisms, 6(4), 125.

Ma, Z., & Su, Z. (2015). Lectotypification of Callicarpa nudiflora (Lamiaceae). Phytotaxa, 224(1), 100.

Mathela, C. S., & Joshi, N. (2008). Antimicrobial activity of Nepeta isolates. Natural Product Communications, 3(6), 625.

Mostafa, A., El-Hela, A., Mohammad, A., Cutler, S., & Ross, S. (2015). Antimalarial compounds isolated from Koelreuteria paniculata growing in Egypt. Planta Medica, 81, 5.

Obistioiu, D., Cristina, R. T., Schmerold, I., Chizzola, R., Stolze, K., Nichita, I., & Chiurciu, V. (2014). Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chemistry Central Journal, 8, 6.

Özgen, M., Saraçoğlu, O., & Geçer, E. N. (2012). Antioxidant capacity and chemical properties of selected barberry (Berberis vulgaris L.) fruits. Horticulture, Environment, and Biotechnology, 53(6), 447–451.

Padder, B., Yasmeen, S., & Ganaie, M. (2015). Antibiotic/antibacterial activity of Vitex negundo, Duranta repens, Acorus calamus and Piper nigrum. British Biotechnology Journal, 6(1), 16–22.

Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kuli­shenko, O. M., & Borovik, I. V. (2020). Chemical composition and antibacterial effect of ethanolic extract of Buxus sempervirens on cryogenic strains of microorganisms in vitro. Chemical Data Collections, 25, 100323.

Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kuli­shenko, O. M., Borovik, I. V., Chumak, V., Kryvaya, A., & Boyko, O. O. (2019). Bactericidal, protistocidal, nematodicidal properties and chemical composition of ethanol extract of Punica granatum peel. Biosystems Diversity, 27(3), 300–306.

Park, W.-H., Lee, S.-J., & Moon, H.-I. (2008). Antimalarial activity of a new stilbene glycoside from Parthenocissus tricuspidata in mice. Antimicrobial Agents and Chemotherapy, 52(9), 3451–3453.

Prashith, K., Vivek, M., Kambar, Y., Manasa, M., & Raghavendra, H. (2014). Comparative study on antimicrobial activity of Vitex negundo var. negundo and Vitex negundo var. purpurascens. Science, Technology and Arts Research Journal, 3(1), 126.

Rivers, M. C. (2016). Laburnum anagyroides. In: IUCN Red List of Threatened Species. P. 43.

Saidana, D., Mahjoub, M. A., Boussaada, O., Chriaa, J., Chéraif, I., Daami, M., Mighri, Z., & Helal, A. N. (2008). Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiolo­gical Research, 163(4), 445–455.

Salević, A., Prieto, C., Cabedo, L., Nedović, V., & Lagaron, J. (2019). Physicoche­mical, antioxidant and antimicrobial properties of electrospun poly(ε-caprolacto­ne) films containing a solid dispersion of sage (Salvia officinalis L.) extract. Nanomaterials, 9(2), 270.

Saxena, J., & Mathela, C. S. (1996). Antifungal activity of new compounds from Nepeta leucophylla and Nepeta clarkei. Applied and Environmental Microbio­logy, 62(2), 702–704.

Sharma, N., & Suri, J. (2016). Protective effect of a standardized fraction from Vitex negundo Linn. against acetaminophen and galactosamine induced hepatotoxicity in rodents. Biochemistry and Analytical Biochemistry, 5, 2.

Skenderidis, P., Mitsagga, C., Lampakis, D., Petrotos, K., & Giavasis, I. (2019). The effect of encapsulated powder of goji berry (Lycium barbarum) on growth and survival of probiotic bacteria. Microorganisms, 8(1), 57.

Steinberg, K. M., Satyal, P., & Setzer, W. N. (2017). Bark essential oils of Zanthoxylum clava-herculis and Ptelea trifoliata: Enantiomeric distribution of monoterpenoids. Natural Product Communications, 12(6), 632.

Tan, L. S., Mousavi, L., & Salleh, R. M. (2017). Development and characterisation of Vitex negundo Linn. noodles. Food Research, 2(1), 68–75.

Thebo, N. (2014). Clinical study of the Prunus dulcis (Almond) shell extract on Tinea capitis infection. Natural Products Chemistry and Research, 2, 3.

Triveni, A. G., Mendem, S. K., Shivannavar, C. T., & Gaddad, S. M. (2016). Antibacterial activity of Vitex negundo leave extract against methicillin resistant Staphylococcus aureus (MRSA). International Journal of Pharmacy and Biological Sciences, 6(3), 55–59.

Tumen, I., Eyuboglu, S., Kurtca, M., & Sekeroglu, N. (2018). Chemical compounds of oak (Quercus petraea (Matt.) Liebl.) species with different medicinal properties in Eastern Black Sea Region. Annals of Phytomedicine, 7(1), 140–146.

Wafa, N., Sofiane, G., & Ouarda, D. (2017). Antioxidant, antimicrobial and anti-inf­lammatory activities valorisation of methanol extract of two Geranium species growth in Setif Algeria. International Journal of Pharma Research and Health Sciences, 5(3), 1698–1702.

Wali, A. F., Hamad, E. A., Khazandar, A. A., Al-Azzawi, A. M., Sarheed, O. A., Menezes, G. A., & Alam, A. (2019). Antimicrobial and in vitro antioxidant activity of Salvia officinalis L. against various re-emergent multidrug resistance microbial pathogens. Annals of Phytomedicine, 8(2), 115–120.

Wang, W., Zu, Y., Fu, Y., Reichling, J., Suschke, U., Nokemper, S., & Zhang, Y. (2009). In vitro antioxidant, antimicrobial and anti-Herpes simplex virus type 1 activity of Phellodendron amurense Rupr. from China. The American Journal of Chinese Medicine, 37(1), 195–203.

Xie, L., Hettiarachchy, N. S., Jane, M. E., & Johnson, M. G. (2003). Antimicrobial activity of Ginkgo biloba leaf extract on Listeria monocytogenes. Journal of Food Science, 68(1), 268–270.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., & Brygadyrenko, V. V. (2019a). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.

Zazharskyi, V., Davydenko, P., Kulishenko, O., Borovik, I., Brygadyrenko, V., & Zazharska, N. (2019b). Antibacterial activity of herbal infusions against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa in vitro. Magyar Állatorvosok Lapja, 141, 693–704.

Zazharskyi, V., Parchenko, M., Fotina, T., Davydenko, P., Kulishenko, O., Zazharskaya, N., & Borovik, I. (2019c). Synthesis, structure, physicochemical properties and antibacterial activity of 1,2,4-triazoles-3-thiols and furan derivatives. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 74–82.

Zhang, H., & An, Z. (2019). Gliotoxin analogues from endophytic Penicillium sp. of Eucommia ulmoides and their antimicrobial activity. Chemistry of Natural Compounds, 55(4), 793–795.

Zhang, X., Lu, Y., Xu, J., & Liu, Z. (2018). Leachates of medicinal herbs inhibit the decomposition rate of Catalpa fargesii Bur. litter. Écoscience, 25(2), 179–188.


Most read articles by the same author(s)

> >>