Fruit and berry plants of forest belts as a factor of species diversity of ornithofauna during the breeding season and autumn migration period


  • V. V. Pesotskaya G. S. Skovoroda Kharkiv National Pedagogical University
  • A. B. Chaplygina G. S. Skovoroda Kharkiv National Pedagogical University
  • T. V. Shupova Institute for Evolutionary Ecology of NAS of Ukraine
  • R. I. Kratenko G. S. Skovoroda Kharkiv National Pedagogical University
Keywords: migrations of birds; feed; numerical composition; floristic composition.

Abstract

During migration, the availability of food that affects the success of bird movements, the nature and timing of their movements, is critical for many bird species. The relationship between migration routes and the ripening of fruit and berry plants along the route is important. Four types of forest belts were studied: wind-blown maple-ash, latticed maple-linden, dense oak-maple-linden, wind-blown oak-maple-poplar. During the study 43 bird species were identified consuming 9 major fruit and berry plant species: Sambucus nigra, Prunus spinosa, Crataegus laevigata, Rosa canina, Prunus padus, Sorbus aucuparia, Rhamnus cathartica, Morus nigra, Prunus cerasus. The highest average number of birds feeding in forest belts (4.14 ind./km) was registered in oak-maple-linden dense forest belts, while the lowest number (1.48 ind./km) was recorded in wind-blown maple-ash ones. Maple-linden latticed forest belts characterize the best index data of α-diversity of birds. In the summer-autumn diet, succulent fruit are the most important: Starling (Sturnus vulgaris) – 11.8% of the total number of birds observed to feed on this food resource, Greenfinch (Chloris chloris) – 11.3%, Chaffinch (Fringilla coelebs) – 9.3%, Song thrush (Turdus philomelos) – 7.3%, Hawfinch (Coccothraustes coccothraustes) – 7.1%, Blackbird (Turdus merula) – 5.4%. 42 species of birds were observed to feed on black elderberry. More than half (51.2%) of the species composition of birds feeding on fruit and berry plants were migratory birds. Consequently, juicy berries are an important food during bird migrations.

References

Aurbach, A., Schmid, B., Liechti, F., Chokani, N., & Abhari, R. (2020). Simulation of broad front bird migration across Western Europe. Ecological Modelling, 415, 108879.
Bairlein, F. (2002). How to get fat: Nutritional mechanisms of seasonal fat accumulation in migratory songbirds. The Science of Nature, 89(1), 1–10.
Bairlein, F. (2003). The study of bird migrations – some future perspectives. Bird Study, 50(3), 243–253.
Bardin, A. V., & Tarasenko, I. R. (2018). Specifika ekspluatacionnoj troficheskoj konkurencii sinantropnyh i dikih vidov ptic v antropogennyh landshaftah [Peculiarities of exploitative trophic competition of synanthropic and wild species of birds in anthropogenic landscapes]. Russian Journal of Ecology, 27(1777), 2518–2524 (in Russian).
Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344(6179), 1300–1310.
Berezovikov, N. N., & Isachenko, A. D. (2018). Zhelna Dryocopus martius kormitsya plodami ryabiny [Zhelna Dryocopus martius feeds on rowan fruits]. Russian Journal of Ecology, 27(1671), 4684–4685 (in Russian).
Blinkova, O., & Shupova, T. (2018). Bird communities and vegetation composition in natural and semi-natural forests of megalopolis: Correlations and comparisons of diversity indices (Kyiv city, Ukraine). Ekológia (Bratislava), 37(3), 259–288.
Bonnet-Lebrun, A., Manica, A., & Rodrigues, A. (2020). Effects of urbanization on bird migration. Biological Conservation, 244, 1–9.
Brezgunova, O. A. (2013). Nochevki skvorcov (Sturnus vulgaris) na zimovkah v g. Harkove [Overnight stays of starlings (Sturnus vulgaris) wintering in Kharkov]. Branta, 16, 120–126 (in Russian).
Chaplygina, A. B. (2009). Osoblyvosti roztashuvannya gnizd drozdiv rodu Turdus v transformovanyh landshaftah Pivnichno-Shidnoyi Ukrayini [Characteristics of nest locations of thrushes of the genus Turdus in transformed landscapes of North-Eastern Ukraine]. Berkut, 18, 135–142 (in Ukrainian).
Chaplygina, A. B. (2016). The consortial relations of eurasian blackcap (Sylvia atri-capilla L.) in the forest cenoses of Left bank Ukraine. Studia Biologica, 10(1), 99–110.
Chaplygina, A. B. (2018). Dendrofil’nye vorob’inoobraznyye (Passeriformes) kak strukturno-funktsional’nyj element antropogenno transformirovannykh lesnykh biogeotsenozov Severo-Vostochnoy Ukrainy [Dendrophilic passerines (Passeriformes) as a structural-functional element of anthropogenically transformed fo¬rest biogeocoenoses of North-Eastern Ukraine]. Oles Honchar Dnipro National University, Dnipro (in Ukrainian).
Chaplygina, A. B., & Savinskaya, N. O. (2016). Sovremennoe sostoyanie ornitofauny transformirovannyh landshaftov Severo-Vostochnoy Ukrainy na primere Muscicapidae i Turdidae [Current status of the avifauna of transformed landscapes of North-Eastern Ukraine by the example of Muscicapidae and Turdidae]. Russian Journal of Ecology, 25, 615–647 (in Russian).
Chaplygina, A. B., Savynska, N. O., & Brygadyrenko, V. V. (2018). Trophic links of the spotted flycatcher, Muscicapa striata, in transformed forest ecosystems of North-Eastern Ukraine. Baltic Forestry, 24(2), 304–312.
Chaplygina, A. B., Yuzyk, D. I., & Savynskay, H. O. (2016). The robin, Erithacus rubecula (Passeriformes, Turdidae), as a component of autotrophic consortia of forest cenoses, Northeast Ukraine. Vestnik Zoologii, 50(4), 369–378.
Chevallier, D., Handrich, Y., Georges, J., Baillon, F., Brossault, P., Aurouet, A., Maho, Y., & Massemin, S. (2010). Influence of weather conditions on the flight of migrating black storks. Proceedings of the Royal Society B: Biological Sciences, 277(1695), 2755–2764.
Croq, C. (2003). Notes sur la frugivoree choz la Mésange à longue quene Aegithalos caudatus. Camparaison avec la frugivorus ches divers Paridés [Notes on the frugivoree choz the long-tailed tit Aegithalos caudatus]. Alauda, 71(3), 357–361.
Curley, S., Manne, L., & Veit, R. (2020). Differential winter and breeding range shifts: Implications for avian migration distances. Diversity and Distributions, 26(4), 415–425.
Doren, B., & Horton, K. (2018). A continental system for forecasting bird migration. Science, 361(6407), 1115–1118.
Doren, B., Horton, K., Dokter, A., Klinck, H., Elbin, S., & Farnsworth, A. (2017). High-intensity urban light installation dramatically alters nocturnal bird migration. Proceedings of the National Academy of Sciences of the United States of America, 114(42), 11175–11180.
Drent, R., Fox, A., & Stahl, J. (2006). Travelling to breed. Journal of Ornithology, 147(2), 122–134.
Dufour, P., Descamps, S., Chantepie, S., Renaud, J., Guéguen, M., Schiffers, K., Thuiller, W., & Lavergne, S. (2020). Reconstructing the geographic and clima-tic origins of long-distance bird migrations, Journal of Biogeography, 47(1), 155–166.
Feldman, A. S., & Berezovikov, N. N. (2017). Novye sluchai kormleniya zhelny Dryocopus martius plodami yabloni sibirskoj Malus baccata v Semipalatinskom Priirtyshe [New cases of feeding Dryocopus martius with fruits of Siberian apple Malus baccata in Semipalatinsk Irtysh region]. Russian Journal of Ecology, 26(1514), 4398–4401 (in Russian).
Gubin, B. M. (2018). Pticy odnogo iz rajonov goroda Almaty [Birds of one of the districts of Almaty]. Russian Journal of Ecology, 27(1650), 3767–3803 (in Russian).
Helm, B., Doren, B. M., Hoffmann, D., & Hoffmann, U. (2019). Evolutionary res-ponse to climate change in migratory pied flycatchers. Current Biology, 29, 3714–3719.
Karpov, F. F. (2017). Troficheskie svyazi ptic s drevesno-kustarnikovymi porodami v zelyonyh nasazhdeniyah goroda Almaty [Trophic relations of birds with trees and shrubs in green spaces of the city of Almaty]. Russian Journal of Ecology, 26(1476), 3090–3098 (in Russian).
Komarov, Y. E., & Komarova, N. A. (2001). K gnezdovoj biologii chernogo drozda v nizhnej chasti gornogo lesnogo poyasa Severnoj Osetii [On the nesting biology of the blackbird in the lower part of the mountain forest belt of North Ossetia]. Caucasian Ornithological Bulletin, 13, 73–79 (in Russian).
Koshelev, V. A., & Matrukhan, T. I. (2010). Rozmishennya i struktura ornitokomp¬leksiv v agrolandshaftah Pivdnya Zaporizkoyi oblasti [Distribution and structure of ornithological complexes in agricultural landscapes of the Zaporizhzhya region]. Newsletter of the Zaporizka National University, 1, 39–52 (in Russian).
Koshelev, V. A., Pakhomov, O. Y., & Busel, V. A. (2020). The formation of sclerophilic ornythocomplexes in the quarries in the South of Ukraine and their conservation prospects. Eсology, Environment and Conservation, 26(1), 411–419.
Kuzmenko, T. M. (2018). Ornatofauna v sostave agropromyshlennogo kompleksa Polissia i Lesostepi Ukrainy [Ornithofauna in the most critical agricultural landscapes Polissia and Forest-Steppe zone of Ukraine]. Schmalhausen Institute of Zoology, Kiev (in Ukrainian).
Lyakh, Y. G. (2018). Borovaya dich, ee prichastnost k rasprostraneniyu bakterialnyh infekcij [Boar game, its involvement in the spread of bacterial infections]. Journal of the Belarusian State University, Ecology, 3, 43–50 (in Russian).
Lyapunov, V. V., Feldman, A. S., & Berezovikov, N. N. (2017). Zhelna Dryocopus martius – novyj potrebitel plodov yabloni sibirskoj Malus baccata v Vostochno-Kazahstanskoj oblasti [Zhelna Dryocopus martius is a new consumer of Siberian apple Malus baccata in the East Kazakhstan region]. Russian Journal of Ecology, 26(1402), 502–507 (in Russian).
Mal’chevskij, А. S., & Kadochnikov, N. P. (1953). Metodika prizhiznennogo izucheniya pitaniya gnezdovyh ptencov nasekomoyadnyh ptic [Methods of in vivo study of nutrition of nesting chicks of insectivorous birds]. Zoological Journal, 32(2), 277–282 (in Russian).
McWilliams, S., Guglielmo, C., Pierce, B., & Klaassen, M. (2004). Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. Journal of Avian Biology, 35, 377–393.
Muheim, R., Schmaljohann, H., & Alerstam, T. (2018). Feasibility of sun and magnetic compass mechanisms in avian long-distance migration. Movement Ecolo¬gy, 6(8), 110–119.
Newton, I. (2006). Can conditions experienced during migration limit the population levels of birds? Journal of Ornithology, 147(2), 146–166.
Nilsson, C., Dokter, A., Verlinden, L., Shamoun-Baranes, J., Schmid, B., Desmet, P., Bauer, S., Chapman, J., Alves, J., Stepanian, P., Sapir, N., Wainwright, C., Boos, M., Górska, A., Menz, M., Rodrigues, P., Leijnse, H., Zehtindjiev, P., Brabant, R., Haase, G., Weisshaupt, N., Ciach, M., & Liechti, F. (2019). Revealing patterns of nocturnal migration using the European weather radar network. Ecography, 42(5), 876–886.
Norevik, G., Åkesson, S., Andersson, A., Bäckman, J., & Hedenström, A. (2019). The lunar cycle drives migration of a nocturnal bird. PLoS Biology, 17(10), 88–98.
Oguchi, Y., Smith, R., & Owen, J. (2017). Fruits and migrant health: Consequences of stopping over in exotic- vs. native-dominated shrublands on immune and antioxidant status of Swainson’s thrushes and gray catbirds. Condor, 119(4), 800–816.
Olney, P. (1966). Berries and birds. Birds, 1(5), 98–99.
Panuccio, M., Dell’Omo, G., Bogliani, G., Catoni, C., & Sapir, N. (2019). Migrating birds avoid flying through fog and low clouds. International Journal of Biometeorology, 63(2), 231–239.
Parrish, J. D. (1997). Patterns of frugivory and energetic condition in nearctic landbirds during autumn migration. Condor, 99(3), 681–697.
Parrish, J. D. (2000). Behavioral, energetic, and conservation implications of foraging plasticity during migration. Studies in Avian Biology, 20, 53–70.
Pereira, P., Godinho, C., Roque, I., Marques, A., Branco, M., & Rabaça, J. (2014). Time to rethink the management intensity in a mediterranean oak woodland: The response of insectivorous birds and leaf-chewing defoliators as key groups in the forest ecosystem. Annals of Forest Science, 71(1), 25–32.
Petrovich, O. Z. (2014). Ptahi polezahisnih lisosmug v mezhah Voznesenskogo rajo¬nu Mikolayivskoyi oblasti u gnizdovij period [Ptahs of useful lisosmugs in the boundaries of the Voznesensky district of the Mykolaiv region near the nest period]. Visti of the Biosphere Reserve Askania-Nova, 16, 46–55 (in Ukrainian).
Pisotska, V. V. (2018). Do ornitofauni polezahisnih lisosmug Harkivskoyi oblasti [To the avifauna of field protective forest belts of Kharkiv region]. Ecology and Noospherology, 30(1), 56–61 (in Ukrainian).
Prokofieva, I. V. (2001). Zabota o ptencah i pitanie popolznej S. europaea [Caring for chicks and feeding nuthatches S. europaea]. Russian Journal of Ecology, 10(168), 1019–1027 (in Russian).
Prokofieva, I. V. (2002). K ekologii sojki Garrulus glandarius v Leningradskoj oblasti [To the ecology of the jay Garrulus glandarius in the Leningrad region]. Russian Journal of Ecology, 11(172), 33–40 (in Russian).
Prokofieva, I. V. (2003). Pitanie vranovyh v letne-osennij period [Corvids nutrition in the summer-autumn period]. Russian Journal of Ecology, 12(230), 814–821 (in Russian).
Prokofieva, I. V. (2005). Rezultaty sravneniya korma vorobinyh ptic v raznye po usloviyam gody [Comparison of food for passerine birds in different years]. Russian Journal of Ecology, 14(287), 42–425 (in Russian).
Ravkin, E. S., & Chelintsev, N. G. (1990). Metodicheskiye rekomendatsii po kompleksnomu marshrutnomu uchetu ptits [Methodical recommendations for integrated route counting of birds]. Nature, Moscow (in Russian).
Rotics, S., Turjeman, S., Kaatz, M., Resheff, Y., Zurell, D., Sapir, N., Eggers, U., Fiedler, W., Flack, A., Jeltsch, F., Wikelski, M., & Nathan, R. (2017). Wintering in Europe instead of Africa enhances juvenile survival in a long-distance migrant. Animal Behaviour, 126, 79–88.
Schmaljohann, H. (2018). Proximate mechanisms affecting seasonal differences in migration speed of avian species. Scientific Reports, 8(1), 1–9.
Shirihai, H., Gargallo, G., & Helbig, A. (2001). Sylvia warblers. Identification, taxonomy and phylogeny of the genus Sylvia. A. & C. Black, London.
Shupova, T. (2014). Adaptatsiya goristskoy tserkvi (Phoenicurus ochruros S. G. Gmelin) do otkrytiya v kiyevskoy aglomeratsii [Adaptations of black redstart (Phoenicurus ochruros S. G. Gmelin) to inhabit in Kyiv city metropolis]. Studia Biologica, 8(1), 187–196 (in Ukrainian).
Smallwood, K., & Bell, D. (2020). Effects of wind turbine curtailment on bird and bat fatalities. Journal of Wildlife Management, 84(4), 685–696.
Smith, S., McPherson, K., Backer, J., Pierce, B., Podelesak, D., & McWilliams, S. (2007). Fruit quality and consumption by songbirds during autumn migration. Wilson Jounrnal of Ornnitology, 119, 419–428.
Somveille, M. (2016). The global ecology of bird migration: Patterns and processes. Frontiers of Biogeography, 8(3), 1–6.
Somveille, M., Manica, A., & Rodrigues, A. (2019). Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography, 42(2), 225–236.
Somveille, M., Rodrigues, A., & Manica, A. (2015). Why do birds migrate? A macroecological perspective. Global Ecology and Biogeography, 24(6), 664–674.
Somveille, M., Wikelski, M., Beyer, R., Rodrigues, А., Manica, А., & Jetz, W. (2020). Simulation-based reconstruction of global bird migration over the past 50,000 years. Nature Communications, 11(1), 801–811.
Sorte, F., Fink, D., Buler, J., Farnsworth, A., & Cabrera-Cruz, S. (2017). Seasonal associations with urban light pollution for nocturnally migrating bird populations. Global Change Biology, 23(11), 4609–4619.
Tattoni, C., Soardi, E., Prosser, F., Odasso, M., Zatelli, P., Ciolli, M. (2019). Fruit availability for migratory birds: A GIS approach. PeerJ, 7, e6394.
Thomas, D. (1979). Figs as food source of migrating garden warblers in Southern Portugal. Bird Study, 26, 187–191.
Trierweiler, C., Klaassen, R., Drent, R., Exo, K., Komdeur, J., Bairlein, F., & Koks, B. (2014). Migratory connectivity and populationspecific migration routes in a long-distance migratory bird. Proceedings of the Royal Society, Biological Sciences, 281(1778), 20132897.
Turček, F. J. (1968). Die Verbreitung der Vogelkirche in den Wäldern durch Vogel. Waldnygiene, 7(5), 129–132.
Vardanis, Y., Klaassen, R., Strandberg, R., & Alerstam, T. (2011). Individuality in bird migration: Routes and timing. Biology Letters, 7(4), 502–505.
Vasilevskaya, A. A. (2018). Netipichnoe kormovoe povedenie zhelny Dryocopus martius na severe Moskvy [Atypical feeding behavior of Dryocopus martius in northern Moscow]. Russian Journal of Ecology, 27(1581), 1255–1258 (in Russian).
Vilkov, E. (2013). Population trends in regular migrants as the basis for a prediction model for conservation of the birds of Eurasia. Russian Journal of Ecology, 44(2), 142–157.
Visser, M., Perdeck, A., van Balen, J., & Both, C. (2009). Climate change leads to decreasing bird migration distances. Global Change Biology, 15(8), 1859–1865.
Wolfe, J. D., Johnson, M. D., & Ralph, C. J. (2014). Do birds select habitat or food resources? Nearctic-neotropic migrants in Northeastern Costa Rica. PLoS One, 9(1), e86221.
Zaifman, J., Shan, D., Ay, A., & Jimenez, A. (2017). Shifts in bird migration timing in North American long-distance and short-distance migrants are associated with climate change. International Journal of Zoology, 2017, 6025646.
Published
2020-09-03
Section
Articles