Carbon dioxide emission and humus status of Albic Stagnic Luvisol under different fertilization regimes

  • Y. M. Olifir Institute of Agriculture of Carpathian region of National Academy of Agrarian Sciences of Ukraine
  • A. J. Habryiel Institute of Agriculture of Carpathian region of National Academy of Agrarian Sciences of Ukraine
  • T. V. Partyka Institute of Agriculture of Carpathian region of National Academy of Agrarian Sciences of Ukraine
  • O. S. Havryshko Institute of Agriculture of Carpathian region of National Academy of Agrarian Sciences of Ukraine
Keywords: mineral fertilizers; liming; soil acidity; soil buffering capacity; CO2; crop rotation productivity


The increase in the carbon dioxide content in the atmosphere, which enhances the greenhouse effect and leads to climate change, is the fundamental scientific problem of nowadays. Modern approaches to fertility management technologies of acid soils based on the principles of resource conservation and environmental safety are presented. They are based on the results of the study of carbon dioxide emission intensity, humus status, and crop rotation productivity in a classic long-term agricultural experiment under the influence of long-term use of various fertilizer systems with the application of ameliorant doses calculated by pH buffering capacity and hydrolytic acidity. The organo-mineral fertilizer system with the addition of 10 t of manure per ha of crop rotation area + N65P68K68, liming with a CaCO3 dose calculated according to pH buffering capacity (2.5 t/ha) contributes most to the optimization of soil processes. At the same time, it ensures the rational use of fertilizers and ameliorants, preservation of fertility, optimizes the processes of humus formation and carbon dioxide release. A high level of productivity of Albic Stagnic Luvisols forms under these conditions – 7.38 t/ha of grain units. Application of 1.0 and 1.5 lime norms calculated according to soil hydrolytic acidity with organic-mineral and mineral fertilizer systems on Albic Stagnic Luvisols in a short four-field crop rotation is not only a high-cost measure. However, it causes significant carbon loss in the form of CO2 due to additional mineralization. It is accompanied by calcium leaching and creates environmental problems in the conditions of the periodic washing-off water regime. Therefore, liming by CaCO3 dose calculated according to acid-base buffering capacity should be carried out before each of the following rotations in order to harmonize the environmental and productive functions of Albic Stagnic Luvisols in the short crop rotation. The obtained research results will be used to improve the methodology for determining carbon dioxide emissions and predicting the effect of various fertilizer and liming systems on its balance in the soil.


Bedernichek, T. Y. (2017). Rezervuary i potoky karbonu u nazemnykh ekosystemakh Ukrainy [Carbon reservoirs and fluxes in terrestrial ecosystems of Ukrai­ne]. Visnyk Natsionalnoi Akademii Nauk Ukrainy, 1, 98–106 (in Ukrainian).

Bouwman, A. F., & Germon, J. C. (1998). Special issue – Soils and climate change – Introduction. Biology and Fertility of Soils, 27, 219–219.

Bradford, J. B., & Ryan, M. G. (2008). Quantifying soil respiration at landscape scales, In: Hoover, C. M. (Ed.). Field measurements for forest carbon monitoring: A landscape-scale approach. Springer, Dordrecht. Pp. 143–162.

Cuhel, J., Simek, M., Laughlin, R. J., Bru, D., Chèneby, D., Watson, C. J., & Philippot, L. (2010). Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Applied and Environmental Microbio­logy, 76(6), 1870–1878.

Demydenko, O. V., & Velychko, V. A. (2014). Upravlinnia obihom vuhletsiu v ahrotsenozakh pid vplyvom nyzkovuhletsevykh ahrotekhnolohij [Management of carbon circulation in agrocenosis under the influence of low-carbon agro-techniques]. Visnyk Ahrarnoji Nauky, 11, 46–52 (in Ukrainian).

Demydenko, O. V., & Velychko, V. A. (2019). Nitrogen-carbon circulation in agrocenoses with different fertilization systems. Agricultural Science and Practice, 6(1), 28–40.

Dmytruk, Y. M., & Demyd, I. E. (2019). Otsinka profilnoho rozpodilu vuhletsiu labilnoji ta vodorozchynnoji form orhanichnoji rechovyny gruntiv [Assessment of profile distribution of carbonoflabile and water-soluble form of soil organic matter]. Ahrokhimija i Gruntoznavstvo, 88, 40–47 (in Ukrainian).

Dobrovolsky, G. V., & Nikitin, E. D. (2012). Ekologiya pochv [Soil ecology]. Publishing House of Moscow State University, Moscow (in Russian).

Gorban, V., Huslystyi, A., Kotovych, O., & Yakovenko, V. (2020). Changes in physical and chemical properties of calcic chernozem affected by Robinia pseudoacacia and Quercus robur plantings. Ekolgia (Bratislava), 39(1), 27–44.

Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., & Gentine, P. (2019). Large influence of soil moisture on longterm terrestrial carbon uptake. Nature, 565, 476–479.

Habriel, A. Y., Snitynskyi, V. V., Olifir, Y. N., & Hermanovych, O. M. (2016). Osobennosti gazoreguliruyushchej funkcii svetlo-seroj lesnoj poverhnostno ogleennoj pochvy pri raznyh sistemah ee ispol’zovanija [Features of gas-regulating function of light-gray forest surface-covered soil under different systems of its use]. Stiinta Agricola, 1, 13–17 (in Russian).

Halytska, M. A., Pysarenko, P. V., & Kulyk, M. I. (2018). Humifikatsiino-minerali­zatsijni protsesy yak pokaznyka kumuliatsiji karbonu v gruntakh [Humification and mineralization processes as an indicator of carbon accumulation in soils]. Tavriiskyi Naukovyi Visnyk, 102, 130–136 (in Ukrainian).

He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D., & Randerson, J. T. (2016). Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 353(6306), 1419–1424.

Houghton, R. A. (2007). Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313–347.

Ibrahim, M., Cao, C., Zhan, M., Li, C.-F., & Iqba, J. (2015). Changes of CO2 emissi­on and labile organic carbon as influenced by rice straw and different water regimes. International Journal of Environmental Science and Technology, 12, 263–274.

Kuzyakov, Y. V., & Larionova, A. A. (2006). Contribution of rhizomicrobial and root respiration to the CO2 emission from soil (A review). Eurasian Soil Science, 39(7), 753–764.

Liu, S., Tan, Z., Li, Z., Zhao, S., & Yuan, W. (2011). Are soils of Iowa USA currently a carbon sink or source? Simulated changes in SOC stock from 1972 to 2007. Agriculture, Ecosystems and Environment, 140(1–2), 106–112.

Martins, A. P., Costa, S. A., Anghinoni, I., Kunrath, T. R., Balerini, F., Cecagno, D., & Carvalho, P. C. F. (2014). Soil acidification and basic cation use efficiency in an integrated no-till crop-livestock system under different grazing intensities. Agriculture, Ecosystems and Environment, 195, 18–28.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stock­mann, U., Sulaeman, Y., Tsuі, C., Vågen, T., Wesemael, B., & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86.

Miroshnychenko, M. M., Shymel, V. V., & Siabruk, O. P. (2011). Dynamika emisiji СO2 za riznykh sposobiv obrobitku gruntu [Dynamics of CO2 emission by different soil cultivation methods]. Ahrokhimiia i Gruntoznavstvo, 74, 11–14 (in Ukrainian).

Mukhortova, L., Shvidenko, A., Schepaschenko, D. Kraxner, F., & McCallum, I. (2015). Soil contribution to carbon budget of Russian forests. Agricultural and Forestry Meteorology, 200, 97–108.

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils – а review. Chemie der Erde – Geochemistry, 76(3), 327–352.

Paul, E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109–126.

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agriculture, Ecosystems and Environment, 200, 33–41.

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinisto, S., Lo­hila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J. C., Grunzweig, J. M., Reth, S., Subke, J. A., Savage, K., Kutsch, W., Ostreng, G., Ziegler, W., Anthoni, P., Lindroth, A., & Hari, P. (2004). Comparison of different cham­ber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteoro­logy, 123, 159–176.

Segnini, A., Xavier, A., Otaviani-Junior, P. L., Oliveira, P., Pedroso, A., Praes, M., Rodrigues, P., & Milori, D. (2019). Soil carbon stock and humification in pastures under different levels of intensification in Brazil. Scientia Agricola, 76(1), 33–40.

Siabruk, O. P., & Tsyhichko, H. O. (2016). Vplyv tradytsijnoji ta orhanichnoji system zemlerobstva na dynamiku emisiji vuhlekysloho hazu ta fermentatyvnu aktyvnist’ chornozemu opidzolenoho [Influence of traditional and organic systems of agriculture on dynamics of carbondioxide emission and enzymatic activity of chernozem podzolized]. Ahrokhimiia i Gruntoznavstvo, 85, 82–87 (in Ukrainian).

Silva-Olaya, A. M., Cerri, C. E. P., Scala Jr., N. L., Dias, C. T. S., & Cerri, C. C. (2013). Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environmental Research Letters, 8, 1–8.

Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315–1324.

Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer manage­ment effects. Agriculture, Ecosystems and Environment, 133(3–4), 247–266.

Trofimenko, P. I., & Trofimenko, N. V. (2018). Intensyvnist’ emisii CО2 z gruntiv Polissia pid chas vehetatsii kultur ta dominantnist zumovliujiuchykh jiji chynnykiv [Intensity of CO2 emission from Polissya soils during crop vegetation and dominance of its reclamation factors]. Melioratsija I Vodne Hospodarstvo, 107(1), 47–54 (in Ukrainian).

Trofymenko, P. І., Zhuravlev, V. Р., Trofymenko, N. V., & Veremeyenko, S. І. (2019). Modeliuvannia ta ahroekolohichne obgruntuvannia rekreatsijnoho periodu gruntiv dlia zabezpechennia jikh staloho funktsionuvannia [Modeling and agroecological substantiation of the recreational period of soils to ensure their sustainable functioning]. Visnyk Ahrarnoji Nauky Prychornomoria, 102, 48–55 (in Ukrainian).

Tsapko, Y. L., Desiatnyk, K. O., & Ohorodnia, A. I. (2018). Zbalansovane vykorystannia ta melioratsiia kyslykh gruntiv [Balanced use and reclamation of acid soils]. FOP Brovin O. V., Kharkiv (in Ukrainian).

Volkohon, V. V., Pyrig, O. V., Volkohon, K. I., & Dimova, S. B. (2019). Methodological aspects of determining the trend of organic matter mineralization ↔ synthesis processes in croplands. Agricultural Science and Practice, 6(1), 3–9.

Wang, H., Wang, S., Yu, Q., Zhang, Y., Wang, R., Li, J., & Wang, X. (2020). No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 261, 110261.

Wang, X., He, C., Liu, B., Zhao, X., Liu, Y., Wang, Q., & Zhang, H. (2020). Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy, 10(5), 691.

Zhao, D.-D., Wang, J., & Fu, X. (2017). Effect of long-term fertilization on soil orga­nic carbon and its fractions under Dryland farming system. Agricultural Research in the arid areas, 35, 97–102.