Features of exogenous development of Trichuris globulosa (Nematoda, Trichuridae)

  • V. O. Yevstafieva Poltava State Agrarian Academy
  • V. V. Melnychuk Poltava State Agrarian Academy
  • N. S. Kanivets Poltava State Agrarian Academy
  • N. I. Dmitrenko Poltava State Agrarian Academy
  • L. P. Karysheva Poltava State Agrarian Academy
  • S. V. Filonenko Poltava State Agrarian Academy
Keywords: trichurosis; helminth egg; embryogenesis; temperature factor; metric indicators.

Abstract

Parasitic nematodes of the genus Trichuris Röderer, 1761 are hematophagous helminths, capable of parasitizing many different hosts including humans. The domestic and wild ruminants are hosts of several Trichuris species, with Trichuris globulosa (Linstow, 1901) one of the most prevalent parasites found in cattle. The exogenous stages of the helminth’s life cycle develop in the outer environment, and their activity and survival depend on the abiotic factors. Thus the aim of the work was to determine the influence of temperature on the rate and success of development of infectious eggs of T. globulosa in laboratory culture considering their morphological and metric changes. The results of experimental studies showed that the embryogenesis of T. globulosa eggs, cultured in laboratory conditions and obtained from gonads of female nematodes, occurs in six stages regardless of the temperature regime. At the same time, the rate of transition from one stage to another, the term for the formation of infectious eggs and their viability directly depends on the temperature of the external environment. At the optimal temperature for the development of T. globulosa eggs, 25 °C, 76.3% of eggs reached the mobile larva stage. A decrease in temperature to 20 °C and an increase to 30° C led to an increase in the egg mortality of up to 26% and 32%, respectively, and the viability of eggs decreased. Under such temperature conditions, 74% and 68% of eggs of Trichuris reached the mobile larva stage. With an increase in the culture temperature, the time of embryogenesis decreased and amounted to 56 days at 20 °C, 48 days at 25 °C, and 32 days at 30 °C. Depending on the temperature regime, the zygote stage lasted from the release of eggs from the gonads of female nematodes to 12 days, the stage of blastomere formation from 4 to 12 days, the stage of the bean-shaped embryo from 8 to 24 days, the stage of the tadpole embryo from 16 to 36 days, the stage of larval formation lasted from 16 to 48 days, the stage of mobile larva from days 20 to 56. The formation of the infectious T. globulosa egg from a non-infectious one is shown in an experiment to include the metric changes confirmed by metric indicators. Mature eggs with a mobile larva are shorter and wider, with shorter and narrower plugs and a thinner shell than eggs at the zygote stage. The obtained research results on the influence of temperature on the exogenous development of Trichuris globulosa will make it possible to predict the epizootic situation of trichurosis in animal husbandry, as well as take timely measures to arrest the embryonic stages of nematode development in the external environment.

References

Al-Albudi, M., & Mosaab, O. (2017). Prevalence of gastrointestinal nematodes of farm animals by copro-culture. Russian Journal of Parasitology, 2, 168–174.


Ananta, S. M., Suharno, H. A., & Matsubayashi, M. (2014). Survey on gastrointestinal parasites and detection of Cryptosporidium spp. on cattle in West Java, Indonesia. Asian Pacific Journal of Tropical Medicine, 7(3), 197–201.


Anvari-Tafti, M., Sazmand, A., Hekmatimoghaddam, S., & Moobedi, I. (2013). Gastrointestinal helminths of camels (Camelus dromedarius) in center of Iran. Tropical Biomedicine, 30(1), 56–61.


Bawm, S., & Htun, L. L. (2015). Parasitic zoonoses in livestock and domestic animals of Myanmar and neighbouring countries. Asian Journal of Animal and Veterinary Advances, 10(11), 740–751.


Beer, R. J. (1976). The relationship between Trichuris trichiura (Linnaeus 1758) of man and Trichuris suis (Schrank 1788) of the pig. Research in Veterinary Science, 20(1), 47–54.


Blaxter, M., & Koutsovoulos, G. (2015). The evolution of parasitism in Nematoda. Parasitology, 142(1), 26–39.


Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of Strongyloides ransomi larvae (Nematoda, Rhabditida) under the influence of synthetic flavourings. Regulatory Mechanisms in Biosystems, 8(1), 36–40.


Boyko, O. O., & Brygadyrenko, V. V. (2019). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.


Boyko, O. O., & Brygadyrenko, V. V. (2020). The impact of certain flavourings and preservatives on the survivability of eggs of Ascaris suum and Trichuris suis. Regulatory Mechanisms in Biosystems, 11(2), 344–348.


Bundy, D. A., & Cooper, E. S. (1989). Trichuris and trichuriasis in humans. Advances in Parasitology, 28, 107–173.


Callejón, R., Gutiérrez-Avilés, L., Halajian, A., Zurita, A., de Rojas, M., & Cutillas, C. (2015). Taxonomy and phylogeny of Trichuris globulosa Von Linstow, 1901 from camels. A review of Trichuris species parasitizing herbivorous. Infection, Genetics and Evolution, 34, 61–74.


Callejón, R., Robles, M., Panei, C. J., & Cutillas, C. (2016). Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences. Parasitology Research, 115(8), 2933–2945.


Charlier, J., Thamsborg, S. M., Bartley, D. J., Skuce, P. J., Kenyon, F., Geurden, T., Hoste, H., Williams, A. R., Sotiraki, S., Höglund, J., Chartier, C., Geldhof, P., van Dijk, J., Rinaldi, L., Morgan, E. R., von Samson-Himmelstjerna, G., Vercruysse, J., & Claerebout, E. (2018). Mind the gaps in research on the control of gastrointestinal nematodes of farmed ruminants and pigs. Transboundary and Emerging Diseases, 65(1), 217–234.


De Jong, Y., Verbeek, M., Michelsen, V., Bjørn, P., de P., Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., Hagedorn, G., Wetzel, F. T., Glöckler, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., Güntsch, A., Stoev, P., & Penev, L. (2014). Fauna Europaea – all European animal species on the web. Biodiversity Data Journal, 2, e4034.


El Hamouri, B., Khallayoune, K., Bouzoubaa, K., Rhallabi, N., & Chalabi, M. (1994). High-rate algal pond performances in fecal coliforms and helminth egg removals. Water Research, 28, 171–174.


Fataliev, G. (2013). Influence of abiotic factors on the embryonal development of Trichocephalus myocastoris (Nematoda, Trichocephalidae) in Azerbaijan. Zoological Journal, 92(12), 1475–1477.


Ghai, R. R., Simons, N. D., Chapman, C. A., Omeja, P. A., Davies, T. J., Ting, N., & Goldberg, T. L. (2014). Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Neglected Tropical Diseases, 8(10), e3256.


Gul, N., & Tak, H. (2016). Prevalence of Trichuris spp. in small ruminants slaughtered in Srinagar District (J&K). Journal of Parasitic Diseases, 40(3), 741–744.


Gunathilaka, N., Niroshana, D., Amarasinghe, D., & Udayanga, L. (2018). Prevalence of gastrointestinal parasitic infections and assessment of deworming program among cattle and buffaloes in Gampaha District, Sri Lanka. BioMed Research International, 2018, 3048373.


Jiménez, A. E., Fernández, A., Alfaro, R., Dolz, G., Vargas, B., Epe, C., & Schnieder, T. (2010). A cross-sectional survey of gastrointestinal parasites with dispersal stages in feces from Costa Rican dairy calves. Veterinary Parasitology, 173, 236–246.


Keyyu, J. D., Kassuku, A. A., Kyvsgaard, N. C., & Willingham, A. L. (2003). Gastrointestinal nematodes in indigenous Zebu cattle under pastoral and nomadic management systems in the lower plain of the southern highlands of Tanzania. Veterinary Research Communications, 27(5), 371–380.


Knopp, S., Steinmann, P., Keiser, J., & Utzinger, J. (2012). Nematode infections: Soil-transmitted helminths and Trichinella. Infectious Disease Clinics of North America, 26(2), 341–358.


Little, P. R., Hodge, A., Maeder, S. J., Wirtherle, N. C., Nicholas, D. R., Cox, G. G., & Conder, G. A. (2011). Efficacy of a combined oral formulation of derquantel-abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains. Veterinary Parasitology, 181, 180–193.


Marskole, P., Verma, Y., Dixit, A. K., & Swamy, M. (2016). Prevalence and burden of gastrointestinal parasites in cattle and buffaloes in Jabalpur, India. Veterinary World, 9(11), 1214–1217.


Maya, C., Ortiz, M., & Jiménez, B. (2010). Viability of Ascaris and other helminth genera non larval eggs in different conditions of temperature, lime (pH) and humidity. Water Science and Technology, 62(11), 2616–2624.


Odeniran, P. O., Jegede, H. O., & Adewoga, T. O. (2016). Prevalence and risk perception of adult-stage parasites in slaughtered food animals (cattle, sheep and goat) among local meat personnel in Ipata abattoir, Ilorin, Nigeria. Veterinary Medicine and Animal Sciences, 4, 1–6.


Pecson, B. M., Barrios, J. A., Jiménez, B. E., & Nelson, K. L. (2007). The effects of temperature, pH, and ammonia concentration on the inactivation of Ascaris eggs in sewage sludge. Water Research, 41(13), 2893–2902.


Pfukenyi, D. M., & Mukaratirwa, S. (2013). A review of the epidemiology and control of gastrointestinal nematode infections in cattle in Zimbabwe. Onderstepoort Journal of Veterinary Research, 80(1), 612–624.


Pramasudha, A. A. R., Nyoman, A. S., & Ida, B. M. O. (2015). The prevalence of Trichuris spp. in Bali cattle according to the layout geographic of Bali Province. Udayana Veterinary Bulletin, 7(2), 202–208.


Pullan, R. L., Gething, P. W., Smith, J. L., Mwandawiro, C. S., Sturrock, H. J., Gitonga, C. W., Hay, S. I., & Brooker, S. (2011). Spatial modelling of soil-transmitted helminth infections in Kenya: A disease control planning tool. PLoS Neglected Tropical Diseases, 5(2), e958.


Regea, G. (2019). Prevalence of major gastrointestinal tract parasite of cattle at municipal Abattoir of Jimma Town, Oromia, South Western Ethiopia. Open Journal of Veterinary Medicine, 4(1), 36–44.


Roepstorff, A., & Murrell, K. D. (1997). Transmission dynamics of helminth parasites of pigs on continuous pasture: Ascaris suum and Trichuris suis. International Journal for Parasitology, 27(5), 563–572.


Skrjabin, K. I. (1928). Metod polnyh gel’mintologicheskih vskrytij pozvonochnyh, vkljuchaja cheloveka [The method of complete helminthological autopsy of vertebrates, including humans]. Moscow State University, Moscow (in Russian).


Skrjabin, K. I., Shikhobalova, N. P., & Orlov, I. V. (1957). Osnovy nematodologii. Trihocefalidy i kapilljariidy zhivotnyh i cheloveka i vyzyvaemye imi zabolevanija [Trichocephalids and capillariids of animals and man and the diseases caused by them. The essentials of nematodology]. Russian Academy of Sciences, Moscow (in Russian).


Storey, G. W., & Phillips, R. A. (1985). The survival of parasite eggs throughout the soil profile. Parasitology, 91(3), 585–590.


Stroehlein, A. J, Young, N. D., Korhonen, P. K., Chang, B. C. H., Nejsum, P., Pozio, E., La Rosa, G., Sternberg, P. W., & Gasser, R. B. (2017). Whipworm kinomes reflect a unique biology and adaptation to the host animal. International Journal for Parasitology, 47(13), 857–866.


Susana, Y., Suwanti, L. T., & Suprihati, E. (2019). Identification and prevalence of gastrointestinal parasites in beef cattle in Siak Sri Indrapura, Riau, Indonesia. Indonesian Journal of Tropical and Infectious Disease, 7(6), 155–160.


Tshering, G., & Dorji, N. (2013). Prevalence of gastrointestinal parasites in free range cattle: A case study in haa district, Bhutan. Journal of Animal Health and Production, 1(4), 36–37.


Tudor, P. (2015). Soil contamination with canine intestinal parasites eggs in the parks and shelter dogs from Bucharest area. Agriculture and Agricultural Science Procedia, 6, 387–391.


Van der Voort, M., Charlier, J., Lauwers, L., Vercruysse, J., Van Huylenbroeck, G., & Van Meensel, J. (2013). Conceptual framework for analysing farm-specific economic effects of helminth infections in ruminants and control strategies. Preventive Veterinary Medicine, 109, 228–235.


Winarso, A., Satrija, F., & Ridwan, Y. (2019). Prevalensi trichurosis pada sapi potong di Kecamatan Kasiman, Kabupaten Bojonegoro, Jawa Timur. Jurnal Kajian Veteriner, 3(2), 225–230.


Yevstafieva, V. А., Kravchenko, S. O., Gutyj, B. V., Melnychuk, V. V., Kovalenko, P. N., & Volovyk, L. B. (2019). Morphobiological analysis of Trichuris vulpis (Nematoda, Trichuridae), obtained from domestic dogs. Regulatory Mechanisms in Biosystems, 10(2), 165–171.


Yevstafieva, V. А., Melnichuk, V. V., Sharavara, T. A., Sirenko, E. V., Makarevich, N. A., Kutsenko, Y. P., & Khlevnaya, G. S. (2018). Osobennosti embrional’nogo razvitija jaic nematod Trichuris skrjabini (Baskakov 1924), parazitirushhih u ovec [Specific features of embryonic development of Trichuris skrjabini (Baskakov, 1924) nematode eggs parasitizing in sheep]. An Agrarian Science of Euro-North-East, 62(1), 65–69 (in Russian).


Yevstafieva, V. А., Yuskiv, I. D., & Melnychuk, V. V. (2015). An investigation of embryo and eggshell development in Trichuris suis (Nematoda, Trichuridae) under laboratory conditions. Vestnik Zoologii, 50(2), 173–178.

Published
2020-10-18
Section
Articles

Most read articles by the same author(s)