Asymmetric hybridization of roach Rutilus rutilus and common bream Abramis brama in controlled backcrosses: Genetic and morphological patterns

  • V. V. Stolbunova Papanin Institute for Biology of Inland Waters of RAS
  • V. V. Pavlova Papanin Institute for Biology of Inland Waters of RAS
  • Y. V. Kodukhova Papanin Institute for Biology of Inland Waters of RAS
Keywords: backcrosses; Cyprinidae; introgression of mtDNA; morphological analysis; nuclear-cytoplasmic incompatibility.


In most cases in natural environments, hybrids of roach Rutilus rutilus L. and bream Abramis brama L. possess mitochondrial DNA of bream. Presumably, the genetic basis for unidirectional hybridization of roach and bream is the high level of divergence in the genes of the mitochondrial electron transport chain (cytochrome b and cytochrome c oxidase subunits I, III). Disruption of the interaction of the products of these genes leads to nuclear-cytoplasmic incompatibility of alien genomes, what is shown in a decrease of viability and developmental abnormalities in hybrids. In the present work we studied the viability and morphology of hybrid underyearlings obtained by crossing of hybrid females of first generation (RA and AR) with males of roach R. rutilus and bream A. brama. The method of genotyping (ITS1 ribosomal DNA, cytochrome b mtDNA) and comparative analysis of the complex of 23 plastic and meristic characteristics of backcrossed hybrids are used. All progenies showed an increase in morphological variability compared to parental species and F1 hybrids. In progenies with introgression of mtDNA, a violation of associations between traits and the formation of transgressive phenotypes that go beyond the parental populations were found. In RAA backcrosses (combining mtDNA of R. rutilus and nuclear genome of A. brama) a decrease in viability with impaired recovery of external traits of bream was found. Conversely, ARR backcrosses (combining mtDNA of A. brama and the nuclear genome of R. rutilus) have a high viability and completely restore the morphotype of roach, which indicates the stable development of hybrids when they include alien genetic material. The differences in viability and morphology between backcrossed hybrids with the mtDNA of R. rutilus and A. brama evidence varying degrees of nuclear-cytoplasmic compatibility of the genomes of roach and bream. The complete interaction between mitochondrial and nuclear DNA from different species (wild-type-like) happens in direction of introgression mtDNA of A. brama, the less polymorphic of the two parental genomes. In the direction of introgression of highly polymorphic mtDNA of R. rutilus the formation of a reproductive barrier occurs. Our results show that the main reason for the asymmetry of hybridization of R. rutilus and A. brama is unequal rates of mitochondrial evolution and the priority of the introgression of mtDNA belongs a species with a lower rate of changes in mtDNA.


Allendorf, F. W., Leary, R. F., Spruell, P., & Wenburg, J. K. (2001). The problems with hybrids: Setting conservation guidelines. Trends in Ecology and Evolution, 16, 613–622.

Anderson, E., & Stebbins Jr., G. L. (1954). Hybridization as an evolutionary stimulus. Evolution, 8, 378–388.

Baerwald, M. R., & May, B. (2004). Characterization of microsatellite loci for five members of the minnow family Cyprinidae found in the Sacramento-San Joaquin Delta and its tributaries. Molecular Ecology, 4, 385–390.

Bell, M. A., & Travis, M. P. (2005). Hybridization, transgressive segregation, genetic covariation, and adaptive radiation. Trends in Ecology and Evolution, 20, 358–361.

Bennett, M. D. (1982). Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation. In: Dover, G. A., & Flavell, R. B. (Eds.). Genome evolution. Academic Press, London. Pp. 239–261.

Bianco, P. G., Aprea, G., Balletto, E., Capriglione, T., Fulgione, D., & Odierna, G. (2004). The karyology of the cyprinid genera Scardinius and Rutilus in Southern Europe. Ichthyological Research, 51, 274–278.

Bolnick, D. I., Turelli, M., López-Fernández, H., Wainwright, P. C., & Near, T. J. (2008). Accelerated mitochondrial evolution and ‘‘Darwin’s corollary’’: asymmetric viability of reciprocal F1 hybrids in centrarchid fishes. Genetics, 178, 1037–1048.

Borkin, L. Y., & Litvinchuk, S. N. (2013). Gibridizatsiya, vidoobrazovanie i sistematika zhivotnykh [Hybridization, speciation and taxonomy of animals]. Trudy Zoologicheskogo Instituta Rossiyskoy Akademii Nauk, 2, 83–139 (in Russian).

Burke, J. M., & Arnold, M. L. (2001). Genetics and the fitness of hybrids. Annual Review of Genetics, 35, 31–52.

Cowx, I. G. (1983). The biology of bream, Abramis brama (L.), and its natural hybrid with roach, Rutilus rutilus (L), in the River Exe. Journal of Fish Biology, 22, 631–646.

Disler, N. N. (1960). Organy chuvstv sistemy bokovoy linii i ikh znachenie v povedenii ryb [Sensory organs of lateral line system and their significance in the behavior of fish]. Izdatelstvo Akademii Nauk SSSR, Moscow (in Russian).

Dittrich-Reed, D. R., & Fitzpatrick, B. M. (2013). Transgressive hybrids as hopeful monsters. Evolutionary Biology, 40, 310–315.

Economidis, P. S., & Wheeler, A. (1989). Hybrids of Abramis brama with Scardinius erythrophthalmus and Rutilus rutilus from Lake Volvi, Macedonia, Greece. Journal of Fish Biology, 35, 295–299.

Ellison, C. K., & Burton, R. S. (2006). Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution, 60(7), 1382–1391.

Fahy, E., Martin, S., & Mulrooney, M. (1988). Interaction of roach and bream in an Irish reservoir. Archiv für Hydrobiologie, 114, 291–309.

Formozov, N. A. (2007). Introgressiya chuzherodnykh mitotipov kak sledstvie gipotezy “peredovogo kraya” Godfreya Hyuitta: Vliyanie geterogametnosti samtsov ili samok i sootnosheniya polov v rasselyayuschikhsya populyatsiyakh [Introgression of alien mitotypes as a consequence of Godfrey Hewitt’s "leading edge hypothesis": The effect of heterogametism in males or females and of sex ratio in dispersing populations]. In: Sovremennye problemy biologicheskoy evolutsii [Modern problems of biological evolution]. Izdatelstvo Gosudarstvennogo Darvinskogo Museya, Moscow. Pp. 155–157 (in Russian).

Golubovskiy, M. D. (2000). Vek genetiki: Evolutsiya idey i ponyatiy [The century of genetics: Evolution of ideas and concepts]. Borey Art, Saint Petersburg (in Russian).

Grodnitsky, D. L. (2002). Dve teorii biologicheskoy evolutsii [Two theories of biological evolution]. 2nd ed. Nauchnaya Kniga, Saratov (in Russian).

Havird, J. C., Hall, M. D., & Dowling, D. K. (2015). The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation. Bioessays, 37(9), 951–958.

Hayden, B., Coscia, I., & Mariani, S. (2011). Low cytochrome b variation in bream Abramis brama. Journal of Fish Biology, 78, 1579–1587.

Hayden, B., Pulcini, D., Kelly-Quinn, M., O’Grady, M., Caffrey, J., McGrath, A., & Stefano, M. (2010). Hybridisation between two cyprinid fishes in a novel habitat: Genetics, morphology and life-history traits. Evolutionary Biology, 10, 169–180.

Hewitt, G. M. (2001). Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Molecular Ecology, 10, 537–549.

Hill, G. E. (2015). Mitonuclear ecology. Molecular Biology and Evolution, 32, 1917–1927.

Hubbs, C. L., & Kuronuma, K. (1942). Hybrydization in nature between two genera of flounders in Japan. Papers of Michigan Academy of Sciences, Arts and Letters, 27, 267–306.

Kodukhova, Y. V. (2011). Yearly variations of impact of natural hybrids of bream and roach (Abramis brama (L.) × Rutilus rutilus (L.)) in Rybinsk Reservoir. Russian Journal of Biological Invasions, 2, 204–208.

Konopinski, M. K., & Amirowicz, A. (2018). Genetic composition of a population of natural common bream Abramis brama × roach Rutilus rutilus hybrids and their morphological characteristics in comparison with parent species. Journal of Fish Biology, 92, 365–385.

Kuparinen, A., Vinni M., Teacher, A. G. F., Kahkonen, K., & Merila, J. (2014). Mechanism of hybridization between bream Abramis brama and roach Rutilus rutilus in their native range. Journal of Fish Biology, 84, 237–242.

Lindsey, C. C. (1975). Pleomerism, the widespread tendency among related fish species for vertebral number to be correlated with maximum body length. Journal of the Fisheries Research Board of Canada, 32, 2453–2469.

Ludanniy, R. I. (2008). Geneticheskaya identifikatsiya i differentsiatsiya predstaviteley semeystva Karpovykh [Genetic identification and differentiation of representatives of cyprinid fishes]. Institut of Gene Biology Russian Academy of Sciences, Moscow (in Russian).

Marckmann, K. (1954). Is there any correlation between metabolism, and number of vertebrae (and other meristic characters) in the sea trout (Salmo trutta trutta L.). Medd. Danmark Fiskeriog Havunders, 1(3), 1–9.

Mather, K., & Jinks, J. L. (1982). Biometrical genetics: The study of continuous variation. Longman, London.

Mathew, С. G. P. (1984). The isolation of high molecular weight eukaryotic DNA. Methods in Molecular Biology, 2, 31–34.

Mayr, E. (1963). Animal species and evolution. Harvard University Press, Cambridge.

Mendel, G. (1923). Opyty nad rastitelnymi gibridami [Experiments on plant hybrids]. Moscow-Petrograd (in Russian).

Nikolyukin, N. I. (1952). Mezhvidovaya gibridizatsiya ryb [Interspecific hybridization of fishes]. Saratov State University, Saratov (in Russian).

Nikolyukin, N. I. (1964). Gibridizatsiya i eyo znachenie v akklimatizatsii [Hybridization and its significance in acclimatization]. Work of Russian Research Institute of Fisheries and Oceanography, 55, 29–43 (in Russian).

Nzau Matondo, B., Ovidio, M., Philippart, J. C., & Poncin, P. (2011). Reproductive behaviour and sexual production in the first-generation hybrids of roach Rutilus rutilus L. common bream Abramis brama L. Journal of Applied Ichthyology, 27, 859–867.

Ocalewicz, K., Jankun, M., & Boron, A. (2004). Karyotypic characterization of bream, Abramis brama (Pisces, Cyprinidae). Folia Zoologica, 53, 329–334.

Pershina, L. A., Trubacheeva, N. V., Sinyavskaya, M. G., Devyatkina, E. P., & Kravtsova, L. A. (2014). Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum. Russian Journal of Genetics, 50, 1017–1024.

Pitts, C. S., Jordan, D. R., Cowx, I. G., & Jones, N. V. (1997). Controlled breeding studies to verify the identity of roach and common bream hybrids from a natural population. Journal of Fish Biology, 51, 686–696.

Poncin, P., Philippart, J. C., & Ruwet, J. C. (1996). Territorial and nonterritorial spawning behaviour in the bream. Journal of Fish Biology, 49, 622–626.

Pravdin, I. F. (1966). Rukovodstvo po izucheniyu ryb [Guide to study of fish]. Pischevaya Promyshlennost, Moscow (in Russian).

Rand, D. M., Haney, R. A., & Fry, A. J. (2004). Cytonuclear coevolution: The genomics of cooperation. Trends in Ecology and Evolution, 19, 645–653.

Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecological Systems, 27, 83–109.

Rokitskiy, P. F. (1978). Vvedenie v statisticheskuyu genetiku [Introduction to statistical genetics]. Vysheyshaya Shkola, Minsk (in Russian).

Ryabov, I. N. (1981). Metody gibridizatsii ryb na primere karpovykh [Methods of fish hybridization using the carp family as an example]. In: Issledovanie razmnozheniya i razvitiya ryb [Study of reproduction and development of fishes]. Nauka, Moscow. Pp. 195–215 (in Russian).

Schwartz, F. J. (1981). World literature to fish hybrids, with an analysis by family, species and hybrid. Supplement 1. NOAA Technical Report NMFS SSRF-750. U.S. Depatment of Commerce.

Stolbunova, V. V. (2017). Mezhgenomnyi konflikt pri otdalennoy gibridizatsii plotvy (Rutilus rutilus L.) i lescha (Abramis brama L.) [Intergenomic conflict in distant hybridization of roach (Rutilus rutilus L.) and bream (Abramis brama L.)]. Uspekhi Sovremennoy Biologii, 137(4), 362–374.

Sulo, P., Spirek, M., Soltesova, A., Marinoni, G., & Piskur, J. (2003). The efficiency of functional mitochondrial replacement in Saccharomyces species has directional character. FEMS Yeast Research, 4, 97–104.

Toscano, B. J., Pulcini, D., Hayden, B., Russo, T., Kelly-Quinn, M., & Martiani, S. (2010). An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biological Journal of the Linnean Society, 99, 768–783.

Vavilov, N. I. (1922). The law of homologous series in variation. Journal of Genetics, 12(1), 47–89.

Wallace, D. C. (2007). Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annual Review of Biochemistry, 76, 781–821.

Werren, J. H., & Beukeboom, L. W. (1998). Sex determination, sex ratios and genetic conflict. Annual Review of Ecology, Evolution, and Systematics, 29, 233–261.

Wirtz, P. (1999). Mother species – father species: Unidirectional hybridization in animals with female choice. Animal Behaviour, 58(1), 1–12.

Wood, A. B., & Jordan, D. R. (1987). Fertility of roach × bream hybrids, Rutilus rutilus (L.) × Abramis brama (L.), and their identification. Journal of Fish Biology, 30, 249–261.

Wyatt, P. M. W., Pitts, C. S., & Butlin, R. K. (2006). A molecular approach to detect hybridization between bream Abramis brama, roach Rutilus rutilus and rudd Scardinius erythrophthalmus. Journal of Fish Biology, 69, 52–71.

Yakovlev, V. N., Slynko, Y. V., Grechanov, I. G., & Krysanov, E. Y. (2000). Distant hybridization in fish. Journal of Ichthyology, 40(4), 298–311.

Zhivotovsky, L. A. (1991). Populyatsionnaya biometriya [Population biometrics]. Nauka, Moscow (in Russian).

Zhuchenko, A. A., & Korol, A. B. (1985). Rekombinatsiya v evolyutsii i selektsii [Recombination in evolution and selection]. Nauka, Moscow (in Russian).