Change in the state of an exploited fish population: From individual indicators to integral assessment

  • E. I. Boznak Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
  • V. G. Tereshchenko Papanin Institute for Biology of Inland Waters
  • A. B. Zakharov Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Keywords: condition; monitoring; European grayling; recreational fishing


We adapted the approach used for the integral assessment of the status of ecosystems in order to assess population status. Classic theoretical concepts of fish population dynamics are the basis of this approach. The convolution of information about changes in several structural and functional characteristics into one integral index was performed using the analytical function of desirability. The index varied 0 to 1 and quantitatively characterizes the state of the population. This approach was tested on the example of the European grayling Thymallus thymallus (Linnaeus, 1758), inhabiting the Vym River (basin of the Northern Dvina River, North of the European part of Russia). The materials were collected during the environmental monitoring carried out by the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS) in 2002, 2005–2019. The population parameters used in the calculations (relative abundance; average and maximum age of fish; the proportion of matured individuals in the 4+ age group; average specific growth rate of fish at the age of 6+; body weight of fish in the age group 6+) were characterized on the basis of the control net catches. Compared with the period 2005–2006, the value of the integral index in 2015–2018 decreased by almost two times. This indicates deterioration in the condition of the grayling group in the study area. There were no serious disturbances in the fish habitat in this area. The main hydrochemical and hydrobiological indicators have not changed significantly. The main reason for the observed changes is likely the significant increase in the impact of recreational anglers. The proposed integral index may be useful both for assessing the state of fish populations and for developing measures for the rational management of fish stocks.


Andersen, J. H., Dahl, K., Göke, C., Hartvig, M., Murray, C., Rindorf, A., Skov, H., Vinther, M., & Korpinen, S. (2014). Integrated assessment of marine biodiversity status using a prototype indicator-based assessment tool. Frontiers in Marine Science, 2014, 55, 1–8.

Anderson, C. N., Hsieh, C. H., Sandin, S. A., Hewitt, R., Hollowed, A., Beddington, J., May, R. M., & Sugihara, G. (2008). Why fishing magnifies fluctuations in fish abundance. Nature, 452, 835–839.

Babayan, V. K., Bobyrev, A. E., Bulgakova, T. I., Vasil’ev, D. A., Il’in, O. I., Kovalev, Y. A., Mihajlov, A. I., Miheev, A. A., Petuhova, N. G., Safaraliev, I. A., Chetyrkin, A. A., & Sheremet’ev, A. D. (2018). Metodicheskie rekomendacii po ocenke zapasov prioritetnyh vidov vodnyh biologicheskih resursov [Methodological recommendations for the assessment of stocks of priority types of aquatic biological resources]. Izdatel’stvo Vserossijskogo Nauchno-Issledovatel’skogo Instituta Rybnogo Hozjajstva i Okeanografii, Moscow (in Russian).

Barnett, L. A., Branch, T. A., Ranasinghe, A. R., & Essington, T. E. (2017). Old-Growth Fishes Become Scarce under Fishing. Current Biology, 27, 2843–2848.

Bikbulatov, E. S., & Stepanova, I. E. (2011). Harrington’s desirability function for natural water quality assessment. Russian Journal of General Chemistry, 81(13), 2694–2704.

Borisov, V. M. (1978). Selekcionnoe vliyanie promysla na strukturu populyacii dlinnociklovyh ryb [The selective effect of fishing on the structure of the long-cycle fish population]. Voprosy Ikhtiologii, 18(3), 1010–1019 (in Russian).

Borja, Á., & Rodríguez, J. G. (2010). Problems associated with the ‘one-out, all-out’ principle, when using multiple ecosystem components in assessing the ecological status of marine waters. Marine Pollution Bulletin, 60(8), 1143–1146.

Borja, A., Prins, T., Simboura, N., Andersen, J. H., Berg, T., Marques, J. C., Neto, J. M., Papadopoulou, N., Reker, J., Teixeira, H., & Uusitalo, L. (2014). Tales from a thousand and one ways to integrate marine ecosystem components when assessing the environmental status. Frontiers in Marine Science, 1(72), 1–20.

Boznak, E. I., & Zaharov, A. B. (2019). Sovremennoe sostoyanie i dinamika populyacionnyh pokazatelej evropejskogo hariusa Timanskogo vodotoka v usloviyah nereguliruemogo rybolovstva [The current state and dynamics of population parameters of the European grayling from the Timan watercourse in the bauxite deposit development area]. Vestnik Insituta Biologii Komi NC UrO RAN, 211, 29–35 (in Russian).

Boznak, E. I., Zakharov, A. B., & Tereshchenko, V. G. (2019). Effect of the increasing intensity of recreational fishing on the fish assemblage of a watercourse in an economic development zone. Inland Water Biology, 12(1), 88–95.

Costa, N. R., Lourenço, J., & Pereira, Z. L. (2011). Desirability function approach: A review and performance evaluation in adverse conditions. Chemometrics and Intelligent Laboratory Systems, 107(2), 234–244.

Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12, 214–218.

Dmitriev, V. V. (2009). Opredelenie integral’nogo pokazatelya sostoyaniya prirodnogo ob’ekta kak slozhnoj sistemy [Determination of the integral indicator of the state of a natural object as a complex system]. Obshchestvo, Sreda, Razvitie, 13, 146–165 (in Russian).

Enberg, K., Jørgensen, C., Dunlop, E. S, Varpe, Ø., Boukal, D. S., Baulier, L., Eliassen, S., & Heino, M. (2012). Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Marine Ecology, 33, 1–25.

Gelashvili, D. B., Korolev, A. A., & Basurov, V. A. (2006). Zonirovanie territorii po stepeni nagruzki stochnymi vodami s pomoshch’yu obobshchyonnoj funkcii zhelatel’nosti (na primere Nizhegorodskoj oblasti) [Territory zonation by the degree of sewage loading with the aid of a generalized function of desirability (with the Nizhniy Novgorod region as an example)]. Povolzhskiy Journal of Ecology, 2/3, 129–138 (in Russian).

Gido, K. B., Matthews, W. J., & Wolfinbarger, W. C. (2000). Long-term changes in a reservoir fish assemblage: Stability in an unpredictable environment. Ecological Applications, 10(5), 1517–1529.

Hovanov, N. V. (1996). Analiz i sintez pokazatelej pri informacionnom deficite. [Analysis and synthesis of indicators in case of information deficit]. Izdatel’stvo Sankt-Peterburgskogo Universiteta, Saint-Petersburg (in Russian).

Hsieh, C. H., Reiss, C. S., Hunter, J. R., Beddington, J. R., May, R. M., & Sugihara, G. (2006). Fishing elevates variability in the abundance of exploited species. Nature, 443, 859–862.

Kotenev, B. N., Kuznetsova, E. N., & Bondarenko, M. V. (2009). Investigation of age composition and growth of cod Gadus morhua morhua of the Barents Sea in connection with the estimation of its stocks state. Journal of Ichthyology, 49(1), 47–55.

Kuemmerlen, M., Reichert, P., Siber, R., & Schuwirth, N. (2019). Ecological assessment of river networks: From reach to catchment scale. Science of the Total Environment, 650, 1613–1627.

Liquete, C., Piroddi, C., Drakou, E. G., Gurney, L., Katsanevakis, S., Charef, A., & Egoh, B. (2013). Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS One 8(7), e67737.

Meng, W., Zhang, N., Zhang, Y., & Zheng, B. (2009). Integrated assessment of river health based on water quality, aquatic life and physical habitat. Journal of Environmental Sciences, 21(8), 1017–1027.

Mercado-Silva, N., Lyons, J., Díaz-Pardo, E., Gutiérrez-Hernández, A., Ornelas-García, C. P., Pedraza-Lara, C., & Zanden, M. J. (2006). Long-term changes in the fish assemblage of the Laja River, Guanajuato, Central Mexico. Aquatic Conservation Marine and Freshwater Ecosystems, 16, 533–546.

Mina, M. V., & Klevezal, G. A. (1976). Rost zhivotnyh [The growth of animals]. Nauka, Moscow (in Russian).

Naish, K. A., & Hard, J. J. (2008). Bridging the gap between the genotype and the phenotype: Linking genetic variation, selection and adaptation in fishes. Fish and Fisheries, 9, 396–422.

Nikol’skij, G. V. (1974). Teoriya dinamiki stada ryb kak biologicheskaya osnova ratsional’noj ekspluatatsii i vosproizvodstva rybnykh resursov [The theory of fish school dynamics as a biological basis of sustainable use and reproduction of fish resources]. Pishchevaya Promyshlennost’, Moscow (in Russian).

Olin, M., Rask, M., Ruuhijärvi, J., & Tammi, J. (2013). Development and evaluation of the Finnish fish-based lake classification method. Hydrobiologia, 713, 149–166.

Orsi, M. L., & Britton, J. R. (2014). Long-term changes in the fish assemblage of a neotropical hydroelectric reservoir. Journal of Fish Biology, 84, 1964–1970.

Petitgas, P. (2009). The CUSUM out-of-control table to monitor changes in fish stock status using many indicators. Aquatic Living Resource, 22(2), 201–206.

Pope, K. L., Lochmann, S. E., & Young, M. K. (2010). Methods for assessing fish populations. Nebraska Cooperative Fish & Wildlife Research Unit – Staff Publications.

Pravdin, I. F. (1966). Rukovodstvo po izucheniyu ryb [Guide to the study of fish]. Pishchevaya Promyshlennost’, Moscow (in Russian).

Quist, M. C. (2007). An evaluation of techniques used to index recruitment variation and year-class strength. North American Journal of Fisheries Management, 27, 30–42.

Reshetnikov, Y. S., & Tereshchenko, V. G. (2017). Quantitative level of research in fish ecology and errors associated with it. Russian Journal of Ecology, 48(3), 233–239.

Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin 191. Fisheries Research Board of Canada, Ottawa.

Sguotti, C., Otto, S. A., Frelat, R., Langbehn, T. J., Ryberg, M. P., Lindegren, M., Durant, J. M., Stenseth, N. C., & Möllmann, C. (2019). Catastrophic dynamics limit Atlantic cod recovery. Proceedings of the Royal Society B, 286, 2018–2877.

Shitikov, V. K., Rozenberg, G. S., & Zinchenko, T. D. (2003). Kolichestvennaya gidroekologiya: Metody sistemnoj identifikacii [Quantitative hydroecology: Methods of systemic identification]. Institut Ekologii Volzhskogo Basseyna RAN, Togliatti (in Russian).

Sidorov, G. P., & Reshetnikov, Y. S. (2014). Lososeobraznye ryby vodoemov evropejskogo Severo-Vostoka [Salmoniformes fish in the ponds of the European Northeast]. Tovarishchestvo Nauchnyh Izdanij KMK, Moscow (in Russian).

Tammi, J., Rask, M., & Ala-Opas, P. (2006). Ecological classification of Finnish lakes using a multimetric fish index. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 29(5), 2276–2278.

Vdovin, A. N., & Chernoivanova, L. A. (2006). Long-term dynamics of certain parameters of pacific herring Clupea pallasii (Clupeidae) in the Peter the Great Bay. Journal of Ichthyology, 46(1), 50–57.

Voitenko, L., &, Voitenko, A. (2017). Integrated assessment of irrigation water quality based on Harrington’s desirability function. International Journal of Agriculture Environment and Food Sciences, 1(1), 55–58.

Zakharov, A. B., & Boznak, E. I. (2019). Rybnoe naselenie vodotokov Timana [Fish population of Timan watercourses]. Federal’nyy Issledovatel’skiy Tsentr Komi Nauchnyy Tsentr Ural’skogo Otdeleniya RAN, Syktyvkar (in Russian).

Zaporozhec, O. M., Shevlyakov, G. V., Zaporozhec, G. V., & Antonov, N. P. (2007). Vozmozhnosti ispol’zovaniya dannyh o nelegal’nom vylove tihookeanskih lososej dlya real’noj ocenki ih zapasov [The use of the data on the illegal catches of pacific salmon in the prognostic researches]. Voprosy Rybolovstva, 31, 471–483 (in Russian).


Most read articles by the same author(s)