Mode of physiological activity of acylcyclohexadione retardants

  • L. M. Mykhalska Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
  • T. M. Makoveychuk Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
  • V. V. Schwartau Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
Keywords: lodging; PGR; trinexapac-ethyl; prohexadione-Ca; calcium metabolism; productivity; cereals.

Abstract

The key to high productivity of plants, especially cereals, is to control lodging of cereals. Among the derivatives of acylcyclohexadiones (ACHD), highly effective retardants have been invented, which are widely used in modern crop production to control the lodging of cereals, mainly winter wheat, spring and winter wheat, winter, spring and hybrids of barley. The mechanisms of influence of ACHD derivatives – trinexapac-ethyl and prohexadione-Ca on plants and features of their application in technologies of cultivation of cultivated plants are considered. By using a composition of ACHD derivatives with a number of agrochemicals, enhancement of retardant activity is achieved. Given the identified varietal variability of the effectiveness of the use of ACHD derivatives in cereals, it is advisable to conduct registration and post-registration studies primarily on varieties that occupy the largest sown areas in the country. The peculiarities of ACHD derivatives’ influence on stem components as the main one, along with the flag leaf, carbon pool for grain filling in the ear and possible reasons for the lack of productivity increase of grain crops due to ACHD derivatives are also considered. This class of substances continues to be widely studied in the world and remains among the most promising for the development of new agrochemicals and drugs.

References

Adams, R., Kerber, E., Pfister, K., & Weiler, E. W. (1992). Studies on the action of the new growth retardant CGA163’935 (Primo). In: Karssen, C. M., van Loon, L. C., & Vreugdenhil, D. (Eds.). Progress in plant growth regulations. Kluwer Academics, Amsterdam. Pp. 818–827.


Altintas, S. (2011). Effects of chlormequat chloride and different rates of prohexadione-calcium on seedling growth, flowering, fruit development and yield of tomato. African Journal of Biotechnology, 10(75), 17160–17169.


Arghavani, M., Kafi, M., Babalar, M., Naderi, R., Hoque, M. A., & Murata, Y. (2012). Improvement of salt tolerance in Kentucky bluegrass by trinexapac-ethyl. Journal of the American Society for Horticultural Science, 47(8), 1163–1170.


Bainsla, N. K., Yadav, R., Singh, G. P., & Sharma, R. K. (2020). Additive genetic behavior of stem solidness in wheat (Triticum aestivum L.). Scientific Reports,10(1), 7336.


Baldwin, C. M., Liu, H., McCarty, L. B., Bauerle, W. L., & Toler, J. E. (2006). Effects of trinexapac-ethyl on the salinity tolerance of two bermudagrass cultivars. Journal of the American Society for Horticultural Science, 41(3), 808–814.


Battal, P. (2004). Effects of some mineral nutrients on gibberellic acid levels in maize plants (Zea mais L). Economic Botany, 58(2), 195–203.


Beasley, J. S., Branham, B. E., & Ortiz-Ribbing, L. M. (2005). Trinexapac-ethyl affects Kentucky bluegrass root architecture. Journal of the American Society for Horticultural Science, 40(5), 1539–1542.


Benetoli da Silva, T. R., Schmidt, R., Tavares da Silva, C. A., Nolla, A., Favero, F., & Poletine, J. P. (2011). Effect of trinexapac-ethyl and nitrogen fertilization on wheat growth and yield. Journal of Food, Agriculture and Environment, 9, 596–598.


Berry, P. M., & Spink, J. (2012). Predicting yield losses caused by lodging in wheat. Field Crops Research, 137, 19–26.


Berry, P. M., Sterling, M., & Mooney, S. J. (2006). Development of a model of lodging for barley. Journal of Agronomy and Crop Science, 192(2), 151–158.


Berry, P. M., Sterling, M., Spink, J. H., Baker, C. J., Sylvester-Bradley, R., Mooney, S. J., & Ennos, A. R. (2004). Understanding and reducing lodging in cereals. Advances in Agronomy, 84, 217–271.


Berry, P., Blackburn, A., Sterling, M., Miao, Y., Hatley, D., Gullick, D., Joseph, G., Whyatt, D., Soper, D., Murray, J., & Baker, C. (2019). A multi-disciplinary approach for the precision management of lodging risk. In: Stafford, J. V. (Ed.), 12th European Conference on Precision Agriculture, ECPA 2019 (963–975). Wageningen Academic Publishers.


Berti, M., Zagonel, J., & Fernandes, E. C. (2007). Produtividade de cultivares de trigo em função do trinexapac-ethyl e doses de nitrogênio [Yield of wheat cultivars in function of trinexapac-ethyl and nitrogen rates]. Scientia Agraria, 8(2), 127–134 (in Portuguese).


Bian, X., Merewitz, E., & Huang, B. (2009). Effects of trinexapac-ethyl on drought responses in creeping bentgrass associated with water use and osmotic adjustment. Journal of the American Society for Horticultural Science, 134(5), 505–510.


Borm, G. E. L., & van den Berg, W. (2008). Effects of the application rate and time of the growth regulator trinexapac-ethyl in seed crops of Lolium perenne L. in relation to spring nitrogen rate. Field Crops Research, 105(3), 182–192.


Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. Biochemistry and molecular biology of plants. In: Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). American Society of Plant Physiologists, Rockville. , Pp. 1158–1203.


Brown, R. G. S., Kawaide, H., Yang, Y. Y., Rademacher, W., & Kamiya, Y. (1997). Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. Physiologia Plantarum, 101(2), 309–313.


Buchholz, G., Ehmann, B., & Wellmann, E. (1995). Ultraviolet light inhibition of phytochromeinduced flavonoid biosynthesis and DNA photolyase formation in mustard cotyledons (Sinapis alba L.). Plant Physiology, 108, 227–234.


Bunnell, B. T., McCarty, L. B., & Bridges, W. C. Jr. (2005). ‘TifEagle’ bermudagrass response to growth factors and mowing height when grown at various hours of sunlight. Crop Science, 45(2), 575–581.


Carvalho, M. E. A., Castro, P. R. de C. e, Ferraz Junior, M. V. de C., & Mendes, A. C. C. M. (2016). Are plant growth retardants a strategy to decrease lodging and increase yield of sunflower? Comunicata Scientiae, 7(1), 154–159.


Chastain, T. G., Young III, W. C., Garbacik, C. J., & Silberstein, T. B. (2015). Trinexapac-ethyl rate and application timing effects on seed yield and yield components in tall fescue. Field Crops Research, 173, 8–13.


Chastain, T. G., Young III, W. C., Silberstein, T. B., & Garbacik, C. J. (2014). Performance of trinexapac-ethyl on Lolium perenne seed crops in diverse lodging environments. Field Crops Research, 157, 65–70.


Chen, C., Lu, S., Chen, Y., Wang, Z., Niu, Y., & Guo, Z. (2009). A gamma-ray induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. Journal of the American Society for Horticultural Science, 134(1), 22–30.


Chen, J.-G., Cheng, S.-H., Cao, W., & Zhou, X. (1998). Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. Journal of Plant Nutrition, 21(1), 87–97.


Choi, J. H., Yoon, H. J., Do, J. A., Park, Y. C., Kim, J. H., & Choi, D. (2011). An analytical method for prohexadione in Chinese cabbage and apple. Biomedical Chromatography, 25(4), 493–497.


Chynoweth, R. J., Trethewey, J. A. K., Rolston, M. P., & McCloy, B. L. (2014). Reduced stem length increases perennial ryegrass seed yield. Agronomy New Zealand, 44, 61–70.


Davière, J. M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140, 1147–1151.


Dreccer, M. F., Condon, A. G., Macdonald, B., Rebetzke, G. J., Awasi, M.-A., Borgognone, M. G., Peake, A., Piñera-Chavez, F. J., Hundt, A., Jackway, P., & McIntyre, C. L. (2020). Genotypic variation for lodging tolerance in spring wheat: Wider and deeper root plates, a feature of low lodging, high yielding germplasm. Field Crops Research, 258(1), 107942.


Elansarya, H. O., & Salem, M. Z. M. (2015). Morphological and physiological responses and drought resistance enhancement of ornamental shrubs by trinexapac-ethyl application. Scientia Horticulturae, 189, 1–11.


Ervin, E. H., & Koski, A. J. (2001). Trinexapac-ethyl increases kentucky bluegrass leaf cell density and chlorophyll concentration. Journal of the American Society for Horticultural Science, 36(4), 787–789.


Ervin, E. H., & Zhang, W. (2007). Influence of sequential trinexapac-ethyl applications on cytokinin content in creepingbentgrass, kentucky bluegrass, and hybrid bermudagrass. Crop Science, 47(5), 2145–2151.


Espindula, M. C., Rocha, V. S., Grossi, J. A. S., Souza, M. A., Souza, L. T., & Favarato, L. F. (2009). Use of growth retardants in wheat. Planta Daninha, 27, 379–387.


Espindulа, M. C., Rocha, V. S., Souza, L. T., Souza, M. A., & Grossi, M. A. S. (2010). Effect of growth regulators on wheat stem elongation. Acta Scientiarum Agronomy, 32(1), 109–116.


Evans, J. R., Evans, R. R., Regusci, C. L., & Rademacher, W. (1999). Mode of action, metabolism, and uptake of BAS 125W, prohexadione-calcium. Journal of the American Society for Horticultural Science, 34(7), 1200–1201.


Fagerness, M. J., & Penner, D. (1998). 14C-trinexapac-ethyl absorption and translocation in Kentucky bluegrass. Crop Science, 38(4), 1023–1027.


Fagerness, M. J., & Yelverton, F. H. (2001). Plant growth regulator and mowing height effects on seasonal root growth of Penncross creeping bentgrass. Crop Science, 41(6), 1901–1905.


Fagerness, M. J., Bowman, D. C., Yelverton, F. H., & Rufty, T. W. (2004). Nitrogen use in Tifway bermudagrass, as affected by trinexapac-ethyl. Crop Science, 44(2), 595–599.


Feng, S., Kong, D., Ding, W., Ru, Z., Li, G., & Niu, L. (2019). A novel wheat lodging resistance evaluation method and device based on the thrust force of the stalks. PLoS One, 14(11), e0224732.


Gilroy, S., Bethke, P. C., & Jones, R. L. (1993). Calcium homeostasis in plants. Journal of Cell Science, 106, 453–461.


Goss, R. M., Baird, J. H., Kelm, S. L., & Calhoun, R. N. (2002). Trinexapac-ethyl and nitrogen effects on creeping bentgrass grown under reduced light conditions. Crop Science, 42(2), 472–479.


Hayat, M. A., Martin, J. M., Lanning, S. P., McGuire, C. F., & Talbert, L. E. (1995). Variation for stem solidness and its association with agronomic traits in spring wheat. Canadian Journal of Plant Science, 75(4), 775–780.


Heckman, N. L., Gaussoin, R. E., Horst, G. L., & Elowsky, C. G. (2005). Growth regulator effects on cellular characteristics of two turfgrass species. International Turfgrass Society Research Journal, 10, 857–861.


Heckman, N. L., Horst, G. L., & Gaussoin, R. E. (2001). Trinexapac-ethy influences specific leaf weight and chlorophyll content of Poa pratensis. International Turfgrass Society Research Journal, 9, 287–290.


Heckman, N. L., Horst, G. L., Gaussoin, R. E., & Tavener, B. T. (2002). Trinexapac-ethyl influence on cell membrane thermostability of Kentucky bluegrass leaf tissue. Scientia Horticulturae, 92(2), 183–186.


Heckman, N. L., Horst, G., Gaussoin, R. E., & Young, L. J. (2001). Heat tolerance of Kentucky bluegrass as affected by trinexapac-ethyl. Journal of the American Society for Horticultural Science, 36(2), 365–367.


Hedden, P. (2003). The genes of the green revolution. Trends in Genetics, 19(1), 5–9.


Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34, 740–760.


Hedden, P., & Stephen, G. T. (Eds.). (2016). Annual plant reviews, 49. The Gibberellins. John Wiley & Sons, Ltd.


Hedden, P., & Thomas, S. G. (2012). Gibberellin biosynthesis and its regulation. Biochemical Journal, 444(1), 11–25.


Islam, M. S., Peng, S., Visperas, R. M., Ereful, N., Bhuiya, M. S. U., & Julfiquar, A. W. (2007). Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Research, 101, 240–248.


Kasem, M. M., & Abd El-Baset, М. М. (2015). Studing the influence of some growth retardants as a chemical mower on ryegrass (Lolium perenne L.). Journal of Plant Sciences, 3(5), 255–258.


Khobra, R., Sareen, S., Meena, B. K., Kumar, A., Tiwari, V., & Singh, G. P. (2019). Exploring the traits for lodging tolerance in wheat genotypes: A review. Physiology and Molecular Biology of Plants, 25(1), 589–600.


Kim, H. Y., Lee, I. J., Hamayun, M., Kim, J. T., Won, J. G., Hwang, I. C., & Kim, K. U. (2007). Effect of prohexadione calcium on growth components and endogenous gibberellins contents of rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 193(6), 445–451.


Koch, F., Aisenberg, G., Monteiro, M., Pedó, T., Zimmer, P., Villela, F., & Aumonde, T. (2017a). Growth of wheat plants submitted to the application of the growth regulator trinexapac-ethyl and vigor of the produced seeds. Agrociencia Uruguay, 21(1), 24–32.


Koch, F., Zimmer, G., Monteiro, M. A., Martins, A. C., Delias, D. S., Troyjack, C., Szareski, V. J., Borges, E. G., Pedó, T., Amarante, L., Villela, F. A., & Aumonde, T. Z. (2017b). Chemical composition and physiological quality of wheat seeds with the application of trinexapac-ethyl, a plant growth regulator. Australian Journal of Crop Science, 11(12), 1527–1533.


Kong, E., Liu, D., Guo, X., Yang, W., Sun, J., Li, X., Zhan, K., Cui, D., Lin, J., & Zhang, A. (2013). Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 1(1), 43–49.


Kuryata, V. G., & Shataliuk, H. S. (2020). Diya giberelinu i retardantiv na pererozpodil vuglevodiv ta elementiv zhyvlennya v lystkah i steblah roslyn agrusu (Grossularia reclinata (L.) Mill.) u zv’yazku z produktyvnistyu kultury [The effect of gibberellin and retardants on the redistribution of carbohydrates and nutrients in gooseberry (Grossularia reclinata (L.) Mill.) leaves and stems in relation to the culture productivity]. Fiziologia Rastenij i Genetika, 52(1), 31–45 (in Ukrainian).


Lau, T. S. L., Eno, E., Goldstein, G., Smith, C., & Christopher, D. A. (2006). Ambient levels of UVB in Hawaii combined with nutrient deficiency decrease photosynthesis in near-isogenic maize lines varying in leaf flavonoids: Flavonoids decrease photoinhibition in plants exposed to UV-B. Photosynthetica, 44(3), 394–403.


Makoveychuk, T. I., Mykhalska, L. M., & Schwartau, V. V. (2018). Vplyv retardantiv – pohidnyh ciklogeksandioniv na produktyvnist pshenyci [Influence of retardants – derivatives of cyclohexandіones on the productivity of winter wheat]. Fiziologia Rastenij i Genetika, 50(6), 499–507 (in Ukrainian).


March, S. R., Martins, D., & McElroy, J. S. (2013). Growth inhibitors in turfgrass. Planta Daninha, 31(3), 733–747.


Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press, London.


Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. 3d ed. Academic Press.


Matysiak, K. (2006). Influence of trinexapac-ethyl on growth and development of winter wheat. Journal of Plant Protection Research, 46(2), 133–143.


McCann, S. E., & Huang, B. (2007). Effects of trinexapac-ethyl foliar application on creeping bentgrass responses to combined drought and heat stress. Crop Science, 47(5), 2121–2128.


McCullough, P. E., Liu, H., McCarty, L. B., Whitwell, T., & Toler, J. E. (2006). Bermudagrass putting green growth, color, and nutrient partitioning influenced by nitrogen and trinexapac-ethyl. Crop Science, 46(4), 1515–1525.


McGrath, M. J., Koczan, J. M., Kennelly, M. M., & Sundin, G. W. (2009). Evidence that prohexadione-calcium induces structural resistance to fire blight infection. Phytopathology, 99(5), 591–596.


Mirabella, N. E., Abbate, P. E., Alonso, M. P., Panelo, J., & Pontaroli, A. C. (2019). Identifying traits at crop maturity and models for estimation of lodging susceptibility in bread wheat. Crop and Pasture Science, 70(2), 95.


Miroshnichenko, I. M., Makoveychuk, T. I., Mykhalska, L. М., & Sсhwartau, V. V. (2017). Zminy elementnoho skladu roslyn pshenytsi ozymoyi za diyi Mehafolu ta petardantiv [Changes in the elemental composition of winter wheat plants caused by the action of Megafol and retardants]. Regulatory Mechanisms in Biosystems, 8(3), 403–409 (in Ukrainian).


Morgun, V. V., Sanin, Y. V., & Schwartau, V. V. (2015). Klub 100 centneriv. Suchasni sorty ta optimal’ni sistemi zhivlennya j zahistu ozimoyi pshenyci [Club 100 centners. Modern varieties and optimal systems of nutrition and protection of winter wheat]. Logos, Kyiv (in Ukrainian).


Morgun, V. V., Sсhwartau, V. V., & Kiriziy, D. A. (2010). Fiziologicheskiye osnovy formirovaniya vysokoj produktivnosti zernovyh zlakov [Physiological fundamentals of formation of high productivity in grain cereals ]. Fiziologia i Biochimija Kulturnykh Rastenij, 42(5), 371–392 (in Russian).


Mykhalska, L. M., Makoveychuk, T. I., & Schwartau, V. V. (2019). Zastosuvannya dobryva megafol ta retardantiv klasu atsyltsykloheksandioniv na posivakh pshenytsi ozymoyi [Application of fertilizer megafol and retardants of acylcyclohexadione class on winter wheat crops]. Fiziologia Rastenij i Genetika, 51(6), 549–551 (in Ukrainian).


Na, C.-I., Hamayun, M., Khan, A. L., Kim, Y.-H., Choi, K.-I., Kang, S.-M., Kim, S.-I., Kim, J.-T., Won, J.-G., & Lee, I.-J. (2011). Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.). African Journal of Biotechnology, 10(61), 13097–13106.


Nangle, E. J., Gardner. D. S., Metzger, J. D., Street, J. R., & Danneberger, T. K. (2012). Impact of nitrogen source and trinexapac-ethyl application on creeping bentgrass (Agrostis stolonifera L.) physiology under neutral shade, deciduous tree shade, and full sunlit conditions. Journal of the American Society for Horticultural Science, 47(7), 936–942.


O’Neill, D. P., & Ross, J. J. (2002). Auxin regulation of the gibberellin pathway in pea. Plant Physiology, 130(4), 1974–1982.


Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H., & Matsuoka, M. (2014). New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One, 9(2), e86870.


Pal, M., Rao, L. S., Jain, V., Srivastava, A. C., Pandey, R., Raj, A., & Singh, K. P. (2005). Effect of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biologia Plantarum, 49(3), 467–470.


Pask, A. J. D., Pietragalla, J., Mullan, D. M., & Reynolds, M. P. (Eds.). (2012). Physiological breeding II: A field guide to wheat phenotyping. Cimmyt, Mexico.


Paulson, G. S., Hull, L. A., & Biddinger, D. J. (2005). Effect of a plant growth regulator prohexadione-calcium on insect pests of apple and pear. Journal of Economic Entomology, 98(2), 423–431.


Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Jesson, M. A., & Reynolds, M. P. (2016). Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. Field Crops Research, 196, 325–336.


Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Molero, G., & Reynolds, M. P. (2016). Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field Crops Research, 196, 64–74.


Piñera-Chavez, F. J., Reynolds, M., Berry, P. M., Foulkes, M. J., & Molero, G. (2020). Optimizing phenotyping methods to evaluate lodging risk for wheat. Field Crops Research, 258(1), 107933.


Pinheiro, M. G., Souza, C. A., Junior, J. F. C. C., da Silva, E. R., & Kandler, R. (2018). Prohexadione-calcium and nitrogen topdressing fertilisation on productive performance of maize with late sowing. International Journal of Plant and Soil Science, 25(4), 1–10.


Pornaro, C., Fiorio, S., Macolino, S., & Richardson, M. D. (2017). Growth and quality responses of low-maintenance turfgrasses to trinexapac-ethyl. Crop Protection, 98, 236–242.


Pricinotto, L. F., Zucareli, C., Fonseca, I. C. B., Oliveira, M. A., Ferreira, A. S., & Spolaor, L. T. (2015). Trinexapac-ethyl in the vegetative and reproductive performance of corn. African Journal of Agricultural Research, 10(14), 1735–1742.


Puhl, F., Stadler, F., & Treutter, D. (2008). Alterations of flavonoid biosynthesis in young grapevine (Vitis vinifera L.) leaves, flowers, and berries induced by the dioxygenase inhibitor prohexadione-Ca. Journal of Agricultural and Food Chemistry, 56(7), 2498–2504.


Qian, Y. L., & Engelke, M. C. (1999). Influence of trinexapac-ethyl on diamond zoysiagrass in a shaded environment. Crop Science, 39(1), 202–208.


Rademacher, W. (2000). Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 501–531.


Rademacher, W. (2014). Prohexadione-Ca and trinexapac-ethyl: Similarities in structure but differences in biological action. Acta Horticulturae: XII International Symposium on Plant Bioregulators in Fruit Production, 1042, 33–41.


Rademacher, W. (2016). Сhemical regulators of gibberellin status and their application in plant production. Annual Plant Reviews, 49, 359–403.


Rademacher, W., Temple-Smith, K. E., Griggs, D. L., & Hedden, P. (1992). The mode of action of acyl cyclo-hexanedione – a new type of growth retardant. In: Karssen, C. M., van Loon, L. C., & Vreugdenhil, D. (Eds.). Progress in plant growth regulation. Proceedings of the 14th International Conference on Plant Growth Substances. Kluwer Academic Publishers, Dordrecht. Pp. 571–577.


Reynolds, M. P., Pask, A. J. D., & Mullan, D. M. (Eds.). (2012). Physiological breeding I: Interdisciplinary approaches to improve crop adaptation. Cimmyt, Mexico.


Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J.,Murchie, E., Parry, M., & Slafer, G. (2012). Achieving yield gains in wheat. Plant, Cell & Environment, 35, 1799–1823.


Rolston, P., Trethewey, J., Chynoweth, R., & McCloy, B. (2010). Trinexapac-ethyl delays lodging and increases seed yield in perennial ryegrass seed crops. New Zealand Journal of Agricultural Research, 53(4), 403–406.


Rose, N. R., Woon, E. C., Tumber, A., Walport, L. J., Chowdhury, R., Li, X. S., King, O. N., Lejeune, C., Ng, S. S., Krojer, T., Chan, M. C., Rydzik, A. M., Hopkinson, R. J., Che, K. H., Daniel, M., Strain-Damerell, C., Gileadi, C., Kochan, G., Leung, I. K., Dunford, J., Yeoh, K. K., Ratcliffe, P. J., Burgess-Brown, N., von Delft, F., Muller, S., Marsden, B., Brennan, P. E., McDonough, M. A., Oppermann, U., Klose, R. J., Schofield, C. J., & Kawamura, A. (2012). Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. Journal of Medicinal Chemistry, 55(14), 6639–6643.


Ross J. J., O’Neill, D. P., Smith, J. J., Kerckhoffs, L. H., & Elliott, R. C. (2000). Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant Journal, 21(6), 547–552.


Ross, J., & O’Neill, D. (2001). New interactions between classical plant hormones. Trends Plant Science, 6(1), 2–4.


Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., & Ueguchi-Tanaka, M. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 134(4), 1642–1653.


Sakr, W. R. A. (2009). Response of paspalum turfgrass grown in sandy soil to trinexapac-ethyl and irrigation water salinity. International Journal of Horticultural Science and Ornamental Plants, 1(2), 15–26.


Sameri, M., Nakamura, S., Nair, S. K., Takeda, K., & Komatsuda, T. (2009). A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theoretical and Applied Genetics, 118, 643–652.


Sang-Kuk, K., & Hak-Yoon, K. (2014). Effects of gibberellin biosynthetic inhibitors on oil, secoisolaresonolodiglucoside, seed yield and endogenous gibberellin content in flax. Korean Journal of Plant Resources, 27(3), 229–235.


Sattar, A., Cheema, M. А., Sher, A., Abbas, T., Ijaz, M., Ul-Allah, S., Butt, M., Qayyum, A., & Hussain, M. (2019). Exogenously applied trinexapac-ethyl improves photosynthetic pigments, water relations, osmoregulation and antioxidants defense mechanism in wheat under salt stress. Cereal Research Communications, 47(3), 430–441.


Shah, L., Yahya, M., Shah, S., Nadeem, M., Ali, A., Ali, A., Wang, J., Riaz, M. W., Rehman, S., Wu, W., Khan, R. M., Abbas, A., Riaz, A., Anis, G. B., Si, H., Jiang, H., & Ma, C. (2019). Improving lodging resistance: Using wheat and rice as classical examples. International Journal of Molecular Sciences, 20(17), 4211.


Sheikh Mohammadi, M. H., Etemadi, N., Arab, M. M., Aalifar, M., Arab, M., & Pessarakli, M. (2016). Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology and Biochemistry, 111, 129–143.


Shekoofa, A., & Emam, Y. (2008). Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. Journal of Agricultural Science and Technology, 10(2), 101–108.


Simmons, D. B., Grey, T. L., Faircloth, W., Vencill1, W. K., & Webster, T. M. (2017). Trinexapac-ethyl winter wheat (Triticum aestivum L.) cultivar evaluations with variable rates of nitrogen. Journal of Experimental Agriculture International, 16(5), 1–9.


Srivastava, L. M. (2003). Plant growth and development. Hormones and the environment. Annals of Botany, 92(6), 846.


Steinke, K., & Stier, J. (2003). Nitrogen selection and growth regulator applications for improving shaded turf performance. Crop Science, 43(4), 1399–1406.


Sсhwartau, V. V., Mykhalska, L. M., & Makoveychuk, T. I. (2018). Vmist mikroelementiv u roslynakh pshenytsi ozymoyi za diyi retardantiv [The content of microelements in winter wheat plants at retardant action]. Fiziologia Rastenij i Genetika, 50(6), 474–483 (in Ukrainian).


Tanimoto, E. (2005). Regulation of root growth by plant hormones-roles for auxin and gibberellin. Journal Critical Reviews in Plant Sciences, 24(4), 249–265.


Trethewey, J. A. K., Rolston, M. P., McCloy, B. L., & Chynoweth, R. J. (2016). The plant growth regulator, trinexapac-ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.). New Zealand Journal of Agricultural Research, 59(2), 113–121.


Turner, J. A. (Ed.). (2018). The pesticide manual: A world compendium. BCPC Publications, Hampshire.


Vavilala, D. T., Reddy, S., Sachchidanand, Prakash, S., Ponnaluri, V. K. C., Kumar, A., & Mukherji, M. (2014). Prohexadione, a plant growth regulator, inhibits histone lysine demethylases and modulates epigenetics. Toxicology Reports, 1, 1152–1161.


Virych, P. A., Makoveychuk, T. I., & Schwartau, V. V. (2012). Vplyv trineksapak-etylu na vmist anioniv u roslynah Hordeum vulgare L. [Influence of trinexapac-ethyl on content of anions in plants of Hordeum vulgare L.]. Uchenyye Zapiski Tavricheskogo Natsional’nogo Universiteta im. V. I. Vernadskogo, Biologiya, Khimiya, 25(3), 27–30 (in Ukrainian).


Wang, D., Ding, W. H., Feng, S. W., Hu, T. Z., Li, G., Li, X. H., Yang, Y. Y., & Ru, Z. G. (2016). Stem characteristics of different wheat varieties and its relationship with lodging-resistance. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, 27, 1496–1502.


Wiecko, G., & Couillard, A.-A. (1997). Response of ’tifway’ bermudagrass to trinexapac-ethyl and chelated iron. Journal of Turfgrass Management, 2(3), 15–21.


Wiersma, J. J., Dai, J., & Durgan, B. R. (2011). Optimum timing and rate of TE to reduce lodging in spring wheat. Agronomy Journal, 103, 864–870.


Xiao, Y., Liu, J., Li, H., Cao, X., Xia, X., & He, Z. (2015). Lodging resistance and yield potential of winter wheat: effect of planting density and genotype. Frontiers of Agricultural Science and Engineering, 2(2), 168–178.


Xiao-Ying, W., Tian-Ming, H. U., Quan-Zhen, W., Li-Min, T., Xiao-Ling, Z., & Kai, T. (2009). Growth of Kentucky bluegrass as influenced by nitrogen and trinexapac-ethyl. Agricultural Sciences, 8(12), 1498–1502.


Xu, C., & Huang, B. (2011). Proteins and metabolites regulated by trinexapac-ethyl in relation to drought tolerance in Kentucky bluegrass. Journal of Plant Growth Regulation, 31, 25–37.


Xu, C., Gao, Y., Tian, B., Ren, J., Meng, Q., & Wang, P. (2017). Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 200, 71–79.


Yang, L., Yang, D., Yan, X., Cui, L., Wang, Z., & Yuan, H. (2016). The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation. Scientific Reports, 6, 35447.


Zagonel, J., & Fernandes, E. C. (2007). Rates and application times of growth reducer affecting wheat cultivars at two nitrogen rates. Planta Daninha, 25(2), 331–339.


Zagonel, J., Venancio, W. S., & Kunz, R. P. (2002). Effect of growth regulator on wheat crop under different nitrogen rates and plant densities. Planta Daninha, 20(3), 471–476.


Zapiola, M. L., Chastain, T. G., Garbacik, C. J., Silberstein, T. B., & Young, W. C. (2006). Trinexapac-ethyl and open field burning maximize seed yield in creeping red fescue. Agronomy Journal, 98(6), 1427–1434.


Zhang, M., Wang, H., Yi, Y., Ding, J., Zhu, M., Li, C., Guo, W., Feng, C., & Zhu, X. (2017b). Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS One, 12(11), e0187543.


Zhang, Y. X, Su, S., Tabori, M., Yu, J., Chabot, D., Baninasab, B., Wang, X., Ma, B.-L., Li, C., & Khanizadeh, S. (2017a). Effect of selected plant growth regulators on yield and stem height of spring wheat in Ontario. Journal of Agricultural Science, 9(12), 30–42.

Published
2020-11-18
Section
Articles

Most read articles by the same author(s)