Time turnover of species in bird communities: the role of landscape diversity and climate change

  • O. I. Koshelev Bogdan Khmelnitsky Melitopol State Pedagogical University
  • V. O. Koshelev Bogdan Khmelnitsky Melitopol State Pedagogical University
  • M. P. Fedushko Bogdan Khmelnitsky Melitopol State Pedagogical University
  • O. V. Zhukov Bogdan Khmelnitsky Melitopol State Pedagogical University
Keywords: ecosystem stability, temporal dynamic, estuary, beta-diversity, temperature, precipitation.


The challenge of searching for patterns of species turnover dynamics in communities of living organisms is directly related to solving problems of stability and functioning of ecosystems. Avian communities are an essential structural and functional component of terrestrial and aquatic ecosystems which are highly diverse and play an important role in a wide range of ecosystem functions. The issue of changes in the dynamics of amphibiotic landscape complexes, where terrestrial and aquatic ecosystems conjugate, is practically not solved. In this connection, a study was carried out within a landscape system, which presents terrestrial and aquatic ecosystems that were in different degrees of anthropogenic transformation. The dynamics of bird communities was considered in the context of recent global climate change. The investigation was conducted in the landscapes of the south and south-east of Ukraine in the nesting seasons 1988–2018. Within the landscape system associated with the Molochny estuary, the ten most important types of ecosystems were distinguished, which included : agricultural lands, artificial forest belts, meadows, islands and spits, reed beds, urban areas, solonchaks, steppe, cliffs, artificial forests. The temporal turnover of the bird communities was decomposed into two parts: the first term (D1) related to the amount of change in community composition, and the second term (D2) being dependent only on the amount of change in community size sensu its abundance. The contribution ratio of the species and of the environment variable were calculated to identify drivers that influence the turnover measure. The average annual temperature and the sum of annual temperatures were considered as environment variables. The bird metacommunity of the studied landscape system was represented by 132 species from 86 genera, 42 families and 13 orders. During the research period the average annual temperature varied from 9.5 to 12.5 ˚C. and the temperature dynamics were subject to the linear trend. An oscillatory component was also present in the temperature dynamics. The annual rainfall ranged 220–761 mm. A coherent change in precipitation and temperature was observed in the period until 2011. After that, the temperature growth stabilized and the amount of precipitation began to fall sharply. The steppe bird community was represented by an extremely small number of species, but demonstrated the ability to maintain a stable structure for a long time. The main fluctuations of the community were quantitative changes in abundance, while the turnover of species was practically absent. Species of the community replace each other cyclically, but there were no targeted changes in community structure. Temperature and precipitation were the main drivers of the bird community in the steppe. The bird communities on salt marshes were characterized by a stable abundance, but a constant directed turnover of species. Reduced water levels and the disappearance of islands in the salt marshes increased the risk of threats from predators, which could lead to a decrease in the abundance of some species. The islands and spits were characterized by high species turnover with quasi-cyclical population dynamics. The main feature of the community dynamics was a decrease in the role of precipitation and an increase in the role of the time factor. The role of temperature remained stably low. The species richness of bird communities in agrarian lands was higher than in steppe communities. The turnover measure was significant because of the increased abundance of Alauda arvensis. Over time, the role of precipitation in the community dynamics has been decreasing and the role of time has been increasing. The value of temperature varied, but was at a stationary level. The turnover of species was compensated by an increase in the abundance of bird communities. The obtained results are in line with findings indicating that despite more stable land use intensities in recent years, climate change has not overtaken land use intensities as the main driver of bird population dynamics.


Alberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168–192.

Albrecht, J., Classen, A., Vollstädt, M. G. R., Mayr, A., Mollel, N. P., Schellenberger Costa, D., Dulle, H. I., Fischer, M., Hemp, A., Howell, K. M., Kleyer, M., Nauss, T., Peters, M. K., Tschapka, M., Steffan-Dewenter, I., Böhning-Gaese, K., & Schleuning, M. (2018). Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 9(1), 3177.

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecology Letters, 14(1), 19–28.

Angeler, D. G., Viedma, O., & Moreno, J. M. (2009). Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling. Ecology, 90(11), 3245–3257.

Azeria, E. T., Carlson, A., Pärt, T., & Wiklund, C. G. (2006). Temporal dynamics and nestedness of an oceanic island bird fauna. Global Ecology and Biogeography, 15(4), 328–338.

Barbe, L., Morel, R., Rantier, Y., Lebas, J.-F., & Butet, A. (2018). Bird communities of a temperate forest: Spatio-temporal partitioning between resident and migratory species. Journal of Ornithology, 159(2), 457–469.

Baselga, A., Bonthoux, S., & Balent, G. (2015). Temporal beta diversity of bird assemblages in agricultural landscapes: Land cover change vs. stochastic processes. PLoS One, 10(5), e0127913.

Blandón, A. C., Perelman, S. B., Ramírez, M., López, A., Javier, O., & Robbins, C. S. (2016). Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region. Biodiversity and Conservation, 25(2), 311–330.

Bradbury, R. B., Hill, R. A., Mason, D. C., Hinsley, S. A., Wilson, J. D., Balzter, H., Anderson, G. Q. A., Whittingham, M. J., Davenport, I. J., & Bellamy, P. E. (2005). Modelling relationships between birds and vegetation structure using airborne LiDAR data: A review with case studies from agricultural and woodland environments. Ibis, 147(3), 443–452.

Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27(4), 325–349.

Brown, B. L., & Lawson, R. L. (2010). Habitat heterogeneity and activity of an omnivorous ecosystem engineer control stream community dynamics. Ecology, 91(6), 1799–1810.

Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater Biology, 51(8), 1389–1406.

Carpenter, S. R., & Brock, W. A. (2006). Rising variance: A leading indicator of ecological transition. Ecology Letters, 9(3), 311–318.

Chalcraft, D. R., Williams, J. W., Smith, M. D., & Willig, M. R. (2004). Scale dependence in the species-richness – productivity relationship: The role of species turnover. Ecology, 85(10), 2701–2708.

Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C., & Shrubb, M. (2000). Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. Journal of Applied Ecology, 37(5), 771–788.

Chaplygina, A. B., Savynska, N. O., & Brygadyrenko, V. V. (2018). Trophic links of the spotted flycatcher, Muscicapa striata, in transformed forest ecosystems of North-Eastern Ukraine. Baltic Forestry, 24(2), 304–312.

Chaplygina, A. B., Pakhomov, O. Y., & Brygadyrenko, V. V. (2019). Trophic links of the song thrush (Turdus philomelos) in transformed forest ecosystems of North-Eastern Ukraine. Biosystems Diversity, 27(1), 51–55.

Coelho, M. T. P., Dambros, C., Rosauer, D. F., Pereira, E. B., & Rangel, T. F. (2019). Effects of neutrality and productivity on mammal richness and evolutionary history in Australia. Ecography, 42(3), 478–487.

Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111(982), 1119–1144.

Cramer, M. J., & Willig, M. R. (2005). Habitat heterogeneity, species diversity and null models. Oikos, 108(2), 209–218.

Davey, C. M., Vickery, J. A., Boatman, N. D., Chamberlain, D. E., Parry, H. R., & Siriwardena, G. M. (2010). Assessing the impact of entry level stewardship on lowland farmland birds in England. Ibis, 152(3), 459–474.

Doak, D. F., Bigger, D., Harding, E. K., Marvier, M. A., O’Malley, R. E., & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. American Naturalist, 151(3), 264–276.

Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society B: Biological Sciences, 268(1462), 25–29.

Dornelas, M., Magurran, A. E., Buckland, S. T., Chao, A., Chazdon, R. L., Colwell, R. K., Curtis, T., Gaston, K. J., Gotelli, N. J., Kosnik, M. A., McGill, B., McCune, J. L., Morlon, H., Mumby, P. J., Øvreås, L., Studeny, A., & Vellend, M. (2013). Quantifying temporal change in biodiversity: Challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20121931.

Durant, J. M., Skern-Mauritzen, M., Krasnov, Y. V., Nikolaeva, N. G., Lindstrøm, U., & Dolgov, A. (2014). Temporal dynamics of top predators interactions in the Barents sea. PLoS One, 9(11), e110933.

Eglington, S. M., & Pearce-Higgins, J. W. (2012). Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS One, 7(3), e30407.

Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: A synthesis. Global Ecology and Biogeography, 16(3), 265–280.

Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12(1), 22–33.

Gil-tena, A., Brotons, I., & Saura, S. (2009). Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Global Change Biology, 15(2), 474–485.

Goetz, S. J., Steinberg, D., Betts, M. G., Holmes, R. T., Doran, P. J., Dubayah, R., & Hofton, M. (2010). Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91(6), 1569–1576.

Gonzalez, A., & Descamps-Julien, B. (2004). Population and community variability in randomly fluctuating environments. Oikos, 106(1), 105–116.

Gordo, O., & Sanz, J. J. (2006). Climate change and bird phenology: A long-term study in the Iberian Peninsula. Global Change Biology, 12(10), 1993–2004.

Gotelli, N. J., & Ulrich, W. (2012). Statistical challenges in null model analysis. Oikos, 121(2), 171–180.

Gregory, R. D., Noble, В. G., & Custance, J. (2004). The state of play of farmland birds: population trends and conservation status of lowland farmland birds in the United Kingdom. Ibis, 146, 1–13.

Gregory, R. D., Willis, S. G., Jiguet, F., Voříšek, P., Klvaňová, A., van Strien, A., Huntley, B., Collingham, Y. C., Couvet, D., & Green, R. E. (2009). An indicator of the impact of climatic change on European bird populations. PLoS One, 4(3), e4678.

Haest, B., Hüppop, O., Pol, M., & Bairlein, F. (2019). Autumn bird migration phenology: A potpourri of wind, precipitation and temperature effects. Global Change Biology, 25(12), 4064–4080.

Halupka, L., & Halupka, K. (2017). The effect of climate change on the duration of avian breeding seasons: A meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 284(1867), 1710.

Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41–49.

Hillebrand, H., Soininen, J., & Snoeijs, P. (2010). Warming leads to higher species turnover in a coastal ecosystem. Global Change Biology, 16(4), 1181–1193.

Houlahan, J. E., Currie, D. J., Cottenie, K., Cumming, G. S., Ernest, S. K. M., Findlay, C. S., Fuhlendorf, S. D., Gaedke, U., Legendre, P., Magnuson, J. J., McArdle, B. H., Muldavin, E. H., Noble, D., Russell, R., Stevens, R. D., Willis, T. J., Woiwod, I. P., & Wondzell, S. M. (2007). Compensatory dynamics are rare in natural ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3273–3277.

Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19(1), 166–172.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.

Hutchinson, G. E. (1965). The niche: An abstractly inhabited hypervolume. The ecological theatre and the evolutionary play. Yale University Press, New Haven.

Jiguet, F., Devictor, V., Ottvall, R., Van Turnhout, C., Van der Jeugd, H., & Lindström, Å. (2010). Bird population trends are linearly affected by climate change along species thermal ranges. Proceedings of the Royal Society B: Biological Sciences, 277(1700), 3601–3608.

Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S., & Couvet, D. (2007). Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology, 13(8), 1672–1684.

Kampichler, C., Angeler, D. G., Holmes, R. T., Leito, A., Svensson, S., van der Jeugd, H. P., & Wesołowski, T. (2014). Temporal dynamics of bird community composition: An analysis of baseline conditions from long-term data. Oecologia, 175(4), 1301–1313.

Karp, D. S., Frishkoff, L. O., Echeverri, A., Zook, J., Juárez, P., & Chan, K. M. A. (2018). Agriculture erases climate-driven β-diversity in Neotropical bird communities. Global Change Biology, 24(1), 338–349.

Karp, D. S., Rominger, A. J., Zook, J., Ranganathan, J., Ehrlich, P. R., & Daily, G. C. (2012). Intensive agriculture erodes β-diversity at large scales. Ecology Letters, 15(9), 963–970.

Kennedy, C. M., Marra, P. P., Fagan, W. F., & Neel, M. C. (2010). Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecological Monographs, 80(4), 651–669.

La Sorte, F. A., & Boecklen, W. J. (2005). Temporal turnover of common species in avian assemblages in North America. Journal of Biogeography, 32(7), 1151–1160.

Laliberte, E., Wells, J. A., DeClerck, F., Metcalfe, D. J., Catterall, C. P., Queiroz, C., Aubin, I., Bonser, S. P., Ding, Y., Fraterrigo, J. M., McNamara, S., Morgan, J. W., Merlos, D. S., Vesk, P. A., & Mayfield, M. M. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters, 13(1), 76–86.

Legendre, P., & Gauthier, O. (2014). Statistical methods for temporal and space-time analysis of community composition data. Proceedings of the Royal Society B: Biological Sciences, 281(1778), 2728.

Lehman, C. L., & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. American Naturalist, 156(5), 534–552.

Leveau, L. M., Isla, F. I., & Bellocq, M. I. (2015). Urbanization and the temporal homogenization of bird communities: A case study in central Argentina. Urban Ecosystems, 18(4), 1461–1476.

Lewthwaite, J. M. M., Debinski, D. M., & Kerr, J. T. (2017). High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography, 26(4), 459–471.

Li, S.-G., Asanuma, J., Kotani, A., Davaa, G., & Oyunbaatar, D. (2007). Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. Journal of Hydrology, 333(1), 133–143.

Loreau, M. (2010). Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 49–60.

Lyons, M. B., Roelfsema, C. M., & Phinn, S. R. (2013). Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing. Estuarine, Coastal and Shelf Science, 120, 42–53.

Mäntylä, E., Klemola, T., & Laaksonen, T. (2011). Birds help plants: A meta-analysis of top-down trophic cascades caused by avian predators. Oecologia, 165(1), 143–151.

Marini, G., Guzzetta, G., Baldacchino, F., Arnoldi, D., Montarsi, F., Capelli, G., Rizzoli, A., Merler, S., & Rosà, R. (2017). The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens. Parasites and Vectors, 10(1), 102.

Márquez-Luna, U., Lara, C., Corcuera, P., & Valverde, P. L. (2019). Factors affecting the dominance hierarchy dynamics in a hummingbird assemblage. Current Zoology, 65(3), 261–268.

McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Chapman and Hall/CRC, Boca Raton, London, New York, Washington.

McDermott, M. E., & DeGroote, L. W. (2016). Long-term climate impacts on breeding bird phenology in Pennsylvania, USA. Global Change Biology, 22(10), 3304–3319.

Meddi, M. (2013). Sediment transport and rainfall erosivity evolution in twelve basins in Central and Western Algeria. Journal of Urban and Environmental Engineering, 2013, 253–263.

Moller, A. P., Rubolini, D., & Lehikoinen, E. (2008). Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences, 105(42), 16195–16200.

Moraitis, M. L., & Karakassis, I. (2020). Assessing large-scale macrobenthic community shifts in the Aegean Sea using novel beta diversity modelling methods. Ramifications on environmental assessment. Science of The Total Environment, 734, 139504.

Oparin, M. L., & Oparina, O. S. (2012). Transformation of bird and mammal faunas in steppe ecosystems under the impact of plowing: The example of Saratov steppes. Biology Bulletin, 39(10), 816–822.

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.

Pereira, P., Godinho, C., Gomes, M., & Rabaça, J. E. (2014). The importance of the surroundings: Are bird communities of riparian galleries influenced by agroforestry matrices in SW Iberian Peninsula? Annals of Forest Science, 71(1), 33–41.

Renner, S. C., & Bates, P. J. J. (2020). Historic changes in species composition for a globally unique bird community. Scientific Reports, 10(1), 10739.

Renner, S. C., Baur, S., Possler, A., Winkler, J., Kalko, E. K. V., Bates, P. J. J., & Mello, M. A. R. (2012). Food preferences of winter bird communities in different forest types. PLoS One, 7(12), e53121.

Renner, S. C., Gossner, M. M., Kahl, T., Kalko, E. K. V., Weisser, W. W., Fischer, M., & Allan, E. (2014). Temporal changes in randomness of bird communities across central Europe. PLoS One, 9(11), e112347.

Sanderson, F. J., Kucharz, M., Jobda, M., & Donald, P. F. (2013). Impacts of agricultural intensification and abandonment on farmland birds in Poland following EU accession. Agriculture, Ecosystems and Environment, 168, 16–24.

Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5(1), 18–32.

Shimadzu, H., Dornelas, M., & Magurran, A. E. (2015). Measuring temporal turnover in ecological communities. Methods in Ecology and Evolution, 6(12), 1384–1394.

Shutt, J. D., Cabello, I. B., Keogan, K., Leech, D. I., Samplonius, J. M., Whittle, L., Burgess, M. D., & Phillimore, A. B. (2019). The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proceedings of the Royal Society B: Biological Sciences, 286(1908), 952.

Shvidenko, A., Buksha, I., Krakovska, S., & Lakyda, P. (2017). Vulnerability of Ukrainian forests to climate change. Sustainability, 9(7), 1152.

Sirami, C., Brotons, L., & Martin, J.-L. (2006). Vegetation and songbird response to land abandonment: from landscape to census plot. Diversity and Distributions, 13(1), 42–52.

Sokolov, S. G., & Zhukov, A. V. (2014). Variation trends in the parasite assemblages of the Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in its native habitat. Biology Bulletin, 41(5), 468–477.

Sokolov, S. G., & Zhukov, A. V. (2016). The diversity of parasites in the Chinese sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Perciformes) under the conditions of large-scale range expansion. Biology Bulletin, 43(4), 374–383.

Sokolov, S. G., & Zhukov, A. V. (2017). Functional diversity of a parasite assemblages of the Chinese sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae) and habitat structure of the host. Biology Bulletin, 44(3), 331–336.

Spake, R., Soga, M., Kawamura, K., Cooke, R. S., Yamaura, Y., & Eigenbrod, F. (2020). Regional variability in landscape effects on forest bird communities. Landscape Ecology, 35(5), 1055–1071.

Srinivasan, U., Elsen, P. R., & Wilcove, D. S. (2019). Annual temperature variation influences the vulnerability of montane bird communities to land‐use change. Ecography, 42(12), 2084–2094.

Srivastava, D. S., & Vellend, M. (2005). Biodiversity-ecosystem function research: Is it relevant to conservation? Annual Review of Ecology, Evolution, and Systematics, 36(1), 267–294.

Stegen, J. C., Freestone, A. L., Crist, T. O., Anderson, M. J., Chase, J. M., Comita, L. S., Cornell, H. V., Davies, K. F., Harrison, S. P., Hurlbert, A. H., Inouye, B. D., Kraft, N. J. B., Myers, J. A., Sanders, N. J., Swenson, N. G., & Vellend, M. (2013). Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 22(2), 202–212.

Steiner, C. F., & Leibold, M. A. (2004). Cyclic assembly trajectories and scale-dependent productivity–diversity relationships. Ecology, 85(1), 107–113.

Stouffer, P. C., Johnson, E. I., Bierregaard, R. O., & Lovejoy, T. E. (2011). Understory bird communities in Amazonian rainforest fragments: Species turnover through 25 years post-isolation in recovering landscapes. PLoS One, 6(6), e20543.

Taylor, C., & Lindenmayer, D. B. (2020). Temporal fragmentation of a critically endangered forest ecosystem. Austral Ecology, 45(3), 340–354.

Török, P., Dembicz, I., Dajić-Stevanović, Z., & Kuzemko, A. (2020). Grasslands of Eastern Europe. In: Encyclopedia of the world’s biomes. Elsevier. Pp. 703–713.

Vandandorj, S., Munkhjargal, E., Boldgiv, B., & Gantsetseg, B. (2017). Changes in event number and duration of rain types over Mongolia from 1981 to 2014. Environmental Earth Sciences, 76(2), 70.

Veech, J. A., & Crist, T. O. (2007). Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography, 16(5), 650–656.

Vengosh, A. (2003). Salinization and saline environments. In: Treatise on Geochemistry. Elsevier. Pp. 1–35.

Visser, M. E., te Marvelde, L., & Lof, M. E. (2012). Adaptive phenological mismatches of birds and their food in a warming world. Journal of Ornithology, 153(S1), 75–84.

Vorovka, V. P., & Demchenko, V. O. (2019). Hydroecological problems of dairy estuary in connection with the instable of its communication with the Azov Sea. Visnyk of V. N. Karazin Kharkiv National University Series Ecology, 21, 23–33.

Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P., & Parmenter, R. (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30(1), 257–300.

Wretenberg, J., Pärt, T., & Berg, Å. (2010). Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biological Conservation, 143(2), 375–381.

Zhang, J., Qian, H., Girardello, M., Pellissier, V., Nielsen, S. E., & Svenning, J. C. (2018). Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 285(1883), 949.

Zhukov, O. V., Bondarev, D. L., Yermak, Y. I., & Fedushko, M. P. (2019). Effects of temperature patterns on the spawining phenology and niche overlap of fish assemblages in the water bodies of the Dnipro River basin. Ecologica Montenegrina, 22, 177–203.

Zymaroieva, A., Zhukov, O., Fedonyuk, T., & Pinkina, T. (2020). The spatio-temporal trend of rapeseed yields in Ukraine as a marker of agro-economic factors influence. Agronomy Research, 18(S2), 119.

Zymaroieva, A., Zhukov, O., Romanchuck, L., & Pinkin, A. (2019). Spatiotemporal dynamics of cereals grains and grain legumes yield in Ukraine. Bulgarian Journal of Agricultural Science, 25(6), 1107–1113.


Most read articles by the same author(s)