Accumulation and localization of sodium and potassium ions in maize plants on saline soil
Abstract
The goal of this work is studying the accumulation and distribution of Na+ and K+ in maize hybrids of different salt tolerance under conditions of the chloride salinity. The new corn hybrid Veselka MV (salt-tolerant) and Odessa 375 MB (not salt-tolerant) were studied. The plants grown in salt-free chernozem soil are control. In the experiment, sodium chloride was dissolved in the irrigation water to form the salinity of test soils up to concentrations of 0.25, 0.5, 0.75, and 1.0% of ovendry weight. Soil moisture in the pots was maintained at 60% of the full field water capacity, the air temperature was +25…+27 °C, and the light – 10 klux. Plant samples were dried in the oven under 70 °C. Then, the average sample of 10 specimens was thoroughly levigated in the porcelain pounder and dispersed in distilled water at 100 °C. The ions were extracted, and the extracts were centrifuged for 20 min at 3000 rpm. The ions content in the cell sap was analysed. Plant samples (1 g) were incubated 10 min in chloroform, dried carefully with filter paper, and then the cell sap was squeezed. 1 ml of clear top layer of the cell sap was dissolved in 10 ml of distilled water. Ions content was determined by the atomic absorption spectrophotometer ("Karl Zeiss", Germany). Salt-tolerant maize hybrid Veselka MW (14 days age) is characterized by an increased content of Na+ in the root tissues in comparison with the above-ground parts. In Odessa 375 MB hybrid this regularity is less pronounced. With the increase of sodium chloride concentration in the soil the content of Na+ in the aerial parts of plants rises. That may be connected with the reduced role of a root barrier. The salt-tolerant hybrid has a higher content of Na+ in the roots as compared to the above-ground parts. The content of K+ was higher in the above-ground parts, which is more pronounced in the salt-tolerant hybrid Veselka MB. The decrease of K+ in cell sap of the root under saline conditions was most pronounced in the salt-sensitive hybrid Odessa 375 MB. The salt-tolerant hybrid Veselka MB is characterized by accumulation of Na+ mainly in the roots, but a higher content of K+ in the aerial part of the plant. For salt-tolerant hybrids are characterized by a higher ratio of K+ / Na+ in the above-ground parts of plants as compared to the not salt-tolerant hybrid.References
Ashraf, M., 1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13, 17–42. >> doi.:10.1080/07352689409701906
>> doi:10.1080/713608051
Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431–434. >> doi:10.1016/S0955-0674(00)00112-5
Blumwald, E., Agaron, G.S., Apse, M.P., 2000. Sodium transport in plant cells. Biochim. Biophys. Acta 1465, 140–151. >> doi:10.1016/S0005-2736(00)00135-8
Ershov, P.V., Reshetova, O.S., Trofimova, M.S., Babakov, A.V., 2005. Activity of ion transporters and salt tolerance of barley [Aktivnost’ ionnyh transporterov i soleustojchivost’ jachmenja]. Fiziologija Rastenij 52(6), 867–875 (in Russian).
Ershov, P.V., Vasekina, A.V., Voblikova, V.D., Taranov, V.V., Rosljakova, T.V., Babakov, A.V., 2007. Identification of homologous K+/H+ antiporter in barley: Expression in varieties that differ in their resistance to NaCl [Identifikacija gomologa K+/Н+-antiportera v jachmene: Jekspressija v sortah, otlichajushhihsja po ustojchivosti k NaCl]. Fiziologija Ras-tenij 54(1), 22–30 (in Russian).
Flowers, T.J., 2004. Improving crop salt tolerance. J. Exp. Bot. 55, 307–319. >> doi:10.1093/jxb/erh003
Flowers, T.J., Hajibagher, M.A., Yeo, A.R., 1991. Ion accumulation in the cell walls of rice plants growing under saline conditions – evidence for the Oertii hypothesis. Plant Cell Environ. 14, 319–325. >> doi:10.1111/j.1365-3040.1991.tb01507.x
Gorham, J., Hardy, C., Wyn Jones, R.G., Joppa, L.R., Law, C.N., 1987. Chromosomal location of a K+/Na+ discriminating character in the D genome of wheat. Theor. Appl. Genet. 74, 584–588. >> doi:10.1007/BF00288856
Gorham, J., Wyn Jones, R.G., Bristol, A., 1990. Partial characterization of the trait for enhanced K+/Na+ discrimination in the D genome of wheat. Planta 180, 590–597. >> doi:10.1007/BF02411458
Hauser, F., Horie, T., 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ. 33, 552–565. >> doi:10.1111/j.1365-3040.2009.02056.x
Ladatko, N.A., Doseeva, O.A., 2010. Accumulation and transport of K+ and Na+ in rice plants in soil salinity [Nakoplenie i transport K+ i Na+ v rastenijah sortov risa v uslovijah pochvennogo zasolenija]. Agrarnyj Vestnik JugoVostoka 3–4, 26–28 (in Russian).
Lakin, G.F., 1990. Biometrics. Moscow, High School (in Russian).
Leonova, T.G., Goncharova, J.A., Hodorenko, A.V., Babakov, A.V., 2005. Salt tolerant and solechuvstvitelnye barley varieties and their characteristics [Soleustojchivye i solechuvstvitel’nye sorta jachmenja i ih harakteristika]. Fiziologija Rastenij 52(6), 876–881 (in Russian).
Mineev, V.G., 2001. Workshop on Agricultural Chemistry. Moscow, Moscow State University.
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. >> doi:10.1146/annurev.arplant.59.032607.092911
Omel’chenko, A.V., Kabuzenko, S.N., Belousov, A.A., Serikov, V.A., 2009. Localization of sodium in tissue compartments of roots and aerial parts of the new generation of corn hybrids due to their salt tolerance [Lokalizacija natrija v kompartmentah tkanej kornej i nadzemnoj chasti gibridov kukuruzy novogo pokolenija v svjazi s ih soleustojchivost’ju]. Uchen. Zap. Tavrich. Nac. Univ. im. V.I. Vernadskogo 22(4), 112–121 (in Russian).
Pardo, J.M., Cubero, B., Leidi, E.O., Quintero, F.J., 2006. Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance. J. Exp. Bot. 57, 1181–1199. >> doi:10.1093/jxb/erj114
Rosljakova, T.V., Molchan, O.V., Vasekina, A.V., Lazareva, E.M., Sokolik, A.I., Jurin, V.M., de Bur, A.H., Babakov, A.V., 2011. Salt tolerance of barley: The relationship isoform expression vacuolar Na+/H+-antiporter with accumulation of 22Na+ [Soleustojchivost’ jachmenja: Vzaimosvjaz’ jekspressii izoform vakuoljarnogo Na+/H+-antiportera s nakopleniem 22Na+]. Fiziologija Rastenij 58(1), 28–39 (in Russian).
Tester, M., Davenport, R., 2003. Na+ tolerance and Na+ transport in higher plants. Annu. Botany 91, 503–527. >> doi:10.1093/aob/mcg058
Vasekina, A.V., Ershov, P.V., Reshetova, O.S., Tihonova, T.V., Lunini, V.G., Trofimova, M.S., Babakov, A.V., 2006. Vacuolar Na+/H+ antiporter of barley: Identification and response to salt stress [Vakuoljarnyj Na+/N+-antiporter jachmenja: Identifikacija i reakcija na solevoj stress]. Biohimija 1, 123–132 (in Russian).
Veselov, D.S., Markova, I.V., Kudojarova, G.R., 2007. Plant response to salinity and the formation of salt tolerance [Reakcija rastenij na zasolenie i formirovanie soleustojchivosti]. Uspehi Sovremennoj Biologii 127(5), 482–493 (in Russian).
Yamaguchi, T., Blumwald, E., 2005. Developing salttolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10, 615–620. >> doi.:10.1016/j.tplants.2005.10.002
Yeo, A.R., 1999. Predicting the interaction between the effects of salinity and climate change on crop plants. Sci. Hortic. 78, 159–174.
Zaharin, A.A., Panichkin, L.A., 2009. Phenomenon solerezistentnosti glycophytes [Fenomen solerezistentnosti glikofitov]. Fiziologija Rastenij 56(1), 107–116 (in Russian).
Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 53, 247–273.
Zorb, C., Noll, A., Karl, S., Leib, K., Yan, F., Schubert, S., 2005. Molecular characterization of Na+/H+-antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J. Plant Physiol. 162, 55–56. >> doi:10.1016/j.jplph.2004.03.010