Pigments content in Сhlorella vulgaris under the influence of the sodium selenite and the ions of metals

  • O. I. Bodnar Ternopil National Pedagogical University named after Volodymyr Gnatiuk
  • H. B. Viniarska Ternopil National Pedagogical University named after Volodymyr Gnatiuk
  • O. V. Vasilenko Ternopil National Pedagogical University named after Volodymyr Gnatiuk
  • V. V. Grubinko Ternopil National Pedagogical University named after Volodymyr Gnatiuk
Keywords: chlorella, selenium (IV), microelements, chlorophyll, carotenoids, cellular wall


We investigated the content of pigments in Chlorella vulgaris Beij. (Chlorophyta) under the influence of sodium selenite in concentrations based on Se4+ 0.5, 5.0, 10.0 and 20.0 mg/dm3 during one, three and seven days and under the influence of the simultaneous action of selenite in concentrations 10 mg Se4+/dm3 and ions of Zn2+, Mn2+, Co2+,Cu2+, Fe3+ in concentrations 5.00, 0.25, 0.05, 0.008 and 0.002 mg/dm3over seven days. This research was carried out to establish the conditions for obtaining algal lipidis substance enriched with selenium and biogenic metals in the aquaculture. The content of pigments was determined spectrophotometrically, the cellular walls were separatedby centrifuge in the percoll gradient and investigated microscopically. The pigments content in the Ch. vulgaris increased by 1.5–2.5 times in comparison with the control sample under the influence of 10 mg Se4+/dm3 with and without metal ions, in all variants of experimental influence due to binding of SeО32– with proteins and lipids. We found that selenium was included in all lipid fractions (triacylglycerols, dyacylglycerols, phospholipids, nonetherified fatty acids); the maximum amount of selenium-containing lipids wasrecorded in chloroplasts. The increase in the contents of carotenoids caused by the actions of experimental factors played an exceptional role in the mechanism of antioxidant protection that prevents destruction of chlorophyll and, accordingly, increases its amount in cells. Changes in the functioning of the photosynthetic apparatus of Ch. vulgaris affect the whole complex of metabolic transformation. Thus, the successful cultivation of chlorella, enriched with selenium and biogenic metals, is possible within seven days under the influence of 10 mg Se4+/dm3 and the above-mentioned concentration of metal ions. 


Bodnar, O.I., Vinyarskaya, G.B., Stanislavchuk, G.V., Grubinko, V.V., 2015. Peculiarities of selenium accumulation and its biological role in algae (A review). Hydrobiological Journal 51(1), 63–78.

Broda, B., 1971. Methods histochemistry of plants. State Agency Medical Publishing House, Warsaw (in Polish).

Buchanan, B.B., Gruissem, W., Jones, R.L., 2015. Biochemistry and molecular biology of plants. Wiley, Oxford.

Demmig-Adams, B., 1990. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020, 1–24.

Findley, J.B.C., Evans, W.H., 1987. Biological membranes: a practical approach. IRL Press, Oxford.

Gennity, J.M., Bottino, N.R., Zingaro, R.A., 1984. The binding of selenium to the lipids of two unicellular marin algae. Biochem. Biophys. Res. Commun. 118(1), 176–182.

Goltvjans’kyj, A.V., 2002. Bioakumuljacija ioniv metaliv klitynamy zelenyh vodorostej ta oderzhannja biomasy bagatoi’ na mikroelementy [Bioaccumulation of metal ions by green algae cells and production of biomass enriched with microelements]. Kyiv (in Ukrainian).

Gorda, А.I., Grubinko, V.V., 2011. Biosyntez lipidiv u Chlorella vulgaris Beijer. za dii’ Mn2+, Zn2+, Cu2+ ta Pb2+ [Biosynthesis of lipids in Chlorella vulgaris Beijer. under the action of Mn2+, Zn2+, Cu2+ and Pb2+]. Reports of the National Academy of Sciences of Ukraine 11, 137–142 (in Ukrainian).

Gorda, А.I., Grubinko, V.V., 2011. Vplyv dyzel’nogo palyva na biosyntez protei’niv, vuglevodiv i lipidiv u Chorella vulgaris Beijer [Effect of diesel fuel on biosynthesis of proteins, carbohydrates and lipids in Chlorella vulgaris Beijer]. Biotechnology Journal 4(6), 74–81 (in Ukrainian).

Grubinko, V.V., Gorda, A.I., Bodnar, O.I., Klochenko, P.D., 2011. Metabolism of algae under the impact of metal ions of the aquatic medium (A review). Hydrobiological Journal 47(6), 75–88.

Grubinko, V.V., Kostiuk, K.V., 2012. Structural changes in the cellular membranes of the aquatic plants under the impact of toxic substances. Hydrobiological Journal 48(2), 40–54.

Grubinko, V.V., Kostiuk, K.V., Lutsiv, A.I., 2014. Structural adaptations of cell walls of Chlorella vulgaris Beijer. under the action of ions zinc and lead. Algologija 24(3), 282–287.

Kostiuk, K.V., Grubinko, V.V., 2014. Ion processes in the cell membranes of the aquatic plants under the toxic substances impact. Hydrobiological Journal 50(3), 80–89.

Mager, W.H., Kruijff, A.J.J., 1995. Stress-induced transcriptional activation. Microbiol. Rev. 59(3), 506–531.

Maksymiec, W., Russa, R., Urbanik-Sypniewska, T., Baszyński, T., 1992. Changes in acyl lipid and fatty acid composition in thylakoids of copper non-tolerant spinach exposed to excess copper. J. Plant Physiol. 140, 52–55.

Minjuk, G.S, Trenkenshu, R.P., Alisievich, A.V., Drobeckaja, I.V., 2000. Vlijanie selena na rost vodorosli Spirulina platensis (Nords.) v nakopitel’noj i kvazinepreryvnoj kul’turah [Effect of selenium on the growth of algae Spirulina platensis (Nords.) in the storage and quasi-continuous cultures]. Ekologija Morja 54, 42–49 (in Russian).

Prasad, M.N.V., Strzalka, K., 1999. Impact of heavy metals on photosynthesis. Heavy Metal Stress in Plants. Springer Verlag. Berlin.

Prevot, P., Soyer-Gobillard, M.O., 1986. Combined аction of сadmium and selenium on two marine dinoflagellates in сulture, Prorocentrum micans and Crypthecodinium cohnii. J. Protozool. 33(1), 42–47.

Romanenko, V.D. (ed.), 2006. Metody gidrobiologichnyh doslidzhen’ poverhnevyh vod [Methods of hydroecological investigation of surface waters]. Logos, Kyiv (in Ukrainian).

Shlyk, A.A. (ed.), 1975. Biosintez i sostojanie hlorofillov v rastenii [Biosynthesis and condition of chlorophylls in plants]. Nauka i Tehnika, Minsk (in Russian).

Sun, X., Zhong, Y., Huang, Z., Yang, Y., 2014. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLoS ONE 9(11), e112270.

Topachevskij, A.V. (ed.), 1975. Metody fiziologo-biohimicheskogo issledovanija vodoroslej v gidrobiologicheskoj praktike [Methods of physiological and biochemical research of algae in hydrobiological practice]. Naukova Dumka, Kyiv (in Russian).

Tsvetkova, N.M., Pakhomov, O.Y., Serdyuk, S.M., Yakyba, M.S., 2016. Biologichne riznomanittja Ukrajiny. Dnipropetrovs'ka oblast'. Grunty. Metaly u gruntah [Bіological diversity of Ukraine. The Dnipropetrovsk region. Soils. Metalls in the soils]. Lira, Dnipropetrovsk (in Ukrainian).

Uminska, R., 1990. Selenium in human environment. Rocz. Panstw. Zakl. Hig. 41, 25–34.

Vance, J.E., Vance, D.E., Schmid, K.M., Ohlrogge, J.B., 2002. Lipid metabolism in plants. Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam.

Vinyarska, H.B., Bodnar, O.I., Stanislavchuk, A.V., Grubinko, V.V., 2014. Zv’jazuvannja selenu Chlorella vulgaris u kul’turі [The binding of selenium by Chlorella vulgaris in the culture]. Ukrainian Biochemical Journal 86(5), 50–51 (in Ukrainian).

Zhou, Z., Li, P., Liu, Z., Liu, X., 1997. Study on the accumulation of selenium and its binding to the proteins, polysaccharides and lipids from Spirulina maxima, Spirulina platensis and Spirulina subsalsa. Oceanol. Limnol. Sin. 28(4), 363–370.

Zolotareva, O.K., Shnyukova, E.I., Sivash, O.O., Mikhaylenko, N.F., 2008. Perspektyvy vykorystannja mikrovodorostej u biotehnologii’ [Prospects of the use of microalgae in biotechnology]. Alterpres, Kyiv (in Ukrainian).