The impact of pollutants on the antioxidant protection of species of the genus Tilia at different developmental stages

  • A. A. Alexeyeva Oles Honchar Dnipropetrovsk National University
  • Y. V. Lykholat Oles Honchar Dnipropetrovsk National University
  • N. O. Khromykh Oles Honchar Dnipropetrovsk National University
  • I. M. Kovalenko Сумський національний аграрний університет
  • E. S. Boroday Oles Honchar Dnipropetrovsk National University
Keywords: linden tree, bud, leaf, seed, contamination, catalase, benzidine-peroxidase, guaiacol-peroxidase

Abstract

The influence of transport fumes and industrial waste on the activity of catalase, benzidine-peroxidase and guaiacol-peroxidase was studied in the dormant buds, leaves and seeds of the following species of the genus Tilia:T. platyphyllos Scop., T. europaea L., T. amurensis Rupr. and T. begoniifolia Stev. We tested the hypothesis that the action of pollutants changes the state of antioxidant protection at different stages of tree development in contaminated phytocenoses. An increase in catalase activity was observed in leaves of all linden species, and the action of transport fumes caused excess over control level by 118, 118, 196, and 61% respectively for T. platyphyllos, T. europaea, T. amurensis and T. begoniifolia. The action of industrial waste was accompanied by a slight decrease in catalase activity in T. europaea leaves, and increase in activity in leaves of T. amurensis and T. begoniifolia (143% and 115%). Benzidine-peroxidase activity increased due to the influence of transport fumes on leaves of T. amurensis and T. begoniifolia (103% and 44%), but decreased due to the effect of industrial waste on leaves of T. europaea, T. amurensis and T. begoniifolia (46%, 30%, and 44% respectively), and was suppressed in the seeds of T. europaea, T. amurensis and T. begoniifolia both under the influence of transport (42%, 47% and 33% below control) and industrial emissions (19%, 19% and 45%), and was reduced in buds of T. platyphyllos, T. europaea and T. amurensis due to the effect of transport fumes (21%, 9% and 20% respectively). Guaiacol-peroxidase activity decreased due to the influence of transport fumes in buds of T. platyphyllos, T. europaea and T. amurensis (41%, 14% and 47% below control), while it increased in the seeds of T. platyphyllos and T. amurensis (104% and 83%), as well as in leaves of T. amurensis and T. begoniifolia both due to the effect of transport (129% and 144%) and of industrial emissions (respectively, 34% and 40% above control). The substantial restructuring of the antioxidant system components in leaves, dormant buds and seeds confirms the hypothesis that metabolic processes in Tilia trees adapt throughout all stages of their development in response to the polluted conditions in urban phytocenoses.

References

Allison, S.D., Schultz, J.C., 2004. Differental activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in Nothern red oak (Quercus rubra L.), J. Chem. Ecol. 30(7), 1363–1379.

Anicic, M., Spasic, T., Tomasevic, M., Rajsic, S., Tasic, M., 2011. Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia sp.). Ecol. Indic. 11(3), 824–830.

Chirkova, T.V. (ed.), 2002. Phiziologicheskye osnovy ustoychivosty rasteniy [Physiological basis of plant resistance]. St. Petersburg Univ. Press, St. Petersburg (in Russian).

Deniz, M., Duzenli, S., 2007. The effect of refinery pollution on non-enzymatic foliar defense mechanisms in four evergreen plants species in Turkey. Acta Physiol. Plant. 29, 71–79.

Divan, A.M., Oliveira, P.L., Perry, C.T., Atz, V.L., Azzarini-Rostirola, L.N., Raya-Rodriguez, M.T., 2009. Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecol. Indic. 9, 1156–1162.

Dragistic-Maksimović, J., Maksimović, V., Živanović, B., Hadži-Tašković, Š.V., Vuletić, M., 2008. Peroxidase activity and phenolic compounds content in maize root and leaf apoplast and their association with growth. Plant Sci. 175(5), 656–662.

Fisher, S., Nicholas, N.S., Scheuerman, P.R., 2002. Dendrochemical analysis of lead and calcium in Southern Appalachian American Beech. J. Environ. Qual. 31, 1137–1145.

Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery abiotic stress tolerance in crop plants. Plant Phys. Biochem. 48(12), 909–930.

Goth, L., 1991. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 196, 143–152.

Gregory, R.P.F., 1966. A rapid assay for peroxidase activity. Biochem. J. 101(3), 582–583.

Halliwell, B., 2006. Reactive species and antioxidants. Redox biology is a fundamental theme in aerobic life. Plant Phys. 141, 312–322.

Hammond-Kosack, K.E., Jones, J.D.G., 1996. Resistance gene-de¬pendent plant defense responses. Plant Cell 8(10), 1773–1791.

Jusypiva, T.I., Korostylova, T.S., 2015. Vplyv tekhnohennoho navantazhennia na fiziolohichni ta tsytohenetychni pokaznyky heneratyvnykh orhaniv predstavnykiv rodu Tilia [Technogenic impact on physiological and cytogenic indices of reproductive organs of Tilia genus representatives]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 23(1), 10–14 (іn Ukrainian).

Kardel, F., Wuyts, K., Babanezhad, M., Wuytack, T., Adriaenssens, S., Samson, R., 2012. Tree leaf wettability as passive bio-indicator of urban habitat quality. Env. Exp. Bot. 75(1), 277–285.

Khromykh, N., 2014. Reaction of glutathione-dependent system of Acer trees vegetative buds to pollutants’ action. Vìsnyk of the Lviìv Unìversìty. Serìes Bìology 67, 268–273.

Khromykh, N.O., Bilchuk, V.S., Rossykhina-Galycha, G.S., Vinnychenko, O.M., 2014. Sezonna dynamika antyoxidantnykh protsessiv u lystkah Acer negundo za diy polyutantiv [Seasonal dynamics of antioxidative processes in Acer negundo leaves under pollutant action]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 22(1), 71–76 (in Ukrainian).

Kosiba, P., 2008. Variability of morphometric leaf traits in small-leaved linden (Tilia cordata Mill.) under the influence of air pollution. Acta Soc. Bot. Pol. 77(2), 125–137.

Madejon, P., Maranon, T., Murillo, J.M., Robinson, B., 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut. 132, 145–155.

Matyssek, R., Wieser, G., Calfapietra, C., Vries, W., Dizengremel, P., Ernst, D., Jolivet, Y., Mikkelsen, T.N., Mohren, G.M.J., Thies, D., Tuovinen, J.-P., Weatherall, A., Paoletti, E., 2012. Forest under climate change and air pollution: Gaps in understanding and future direction for research. Environ. Pollut. 160, 57–65.

Pakhomov, O.Y., Brygadyrenko, V.V., 2005. Koncepcija systemy zahodiv z ohorony navkolyshn'ogo pryrodnogo seredovyshha Dnipropetrovs'koi' oblasti na 2005–2015 roky [Concept of system for actions on environment protection in Dnipropetrovsk region for 2005–2015]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 13(1), 213–225.

Polovnikova, M.G., Voskresenskaya, O.L., 2008. Aktivnost komponentov antioksidantnoy zaschity i polifenoloksidazy u gazonnykh rasteniy v ontogeneze v usloviyakh gorodskoy sredy [Activity of antioxidative Defense components and polyphenoloxidase of lawn plants during ontogenesis under urban conditions]. Russ. J. Plant Physl. 55(5), 777–785 (in Russian).

Ramel, F., Sulmon, C., Serra, A.-A., Gouesbet, G., Couee, I., 2012. Xenobiotic sensing and signaling in higher plants. J. Exp. Bot. 63(11), 3999–4014.

Ranieri, A., Castagna, A., Baldam, B., Soldatini, G.F., 2001. Iron deficiency differently affects peroxidase isoforms in sunflower. J. Exp. Bot. 52, 25–35.

Ranieri, A., Castagna, A., Lorenzini, G., Soldatini, G.F., 1997. Changes in thylakoid protein patterns and antioxidant levels in two wheat cultivars with different sensitivity to sulphur dioxide. Environ. Exp. Bot. 37, 125–135.

Roy, S., Byrne, J., Pickering, C., 2012. Asystematic quantitative review of urban tree benefits, costs,and assessmentmet hods across cities in different climatic zones. Urban For. Urban Gree. 11, 351–363.

Sheykholeslami, A., Namiranian, M., Sagheb-Talebi, K., 2011. A study of large-leaved lime (Tilia platyphyllos Scop.) in forests of Western Mazandaran. J. Biodivers Ecol. Sci. 1(1), 65–75.

Strіletz, R.O. (ed.), 2015. Ekologіchnij pasport Dnіpropetrovskoi oblastі [Ecological passport of Dnipropetrovsk region]. Dnіpropetrovsk (in Ukrainian).

Tomasevic, M., Rajsic, S., Dordevic, D., Tasic, M., Krstic, J., Novakovic, V., 2004. Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters 2, 151–154.

Tsvetkova, N.M., Pakhomov, O.Y., Serdyuk, S.M., Yakyba, M.S., 2016. Biologichne riznomanittja Ukrajiny. Dnipropetrovs'ka oblast'. Grunty. Metaly u gruntah [Bіological diversity of Ukraine. The Dnipropetrovsk region. Soils. Metalls in the soils]. Lira, Dnipropetrovsk (in Ukrainian).

Walter, J., Jentsch, A., Beierkuhnlein, K., Kreyling, J., 2013. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Env. Exp. Bot. 94(10), 3–8.

Yerofeyeva, E.A., 2014. Dependence of drooping birch (Betula pendula) and lime tree (Tilia cordata) relative seed production as a new seed production index on the intensity of motor traffic pollution. Adv. Environ. Biol. 8, 282–286.

Published
2016-03-16
Section
Articles

Most read articles by the same author(s)