The functional organisation of the mesopedobionts community of sod pinewood soils on arena of the river Dnepr

  • O. V. Zhukov Oles Honchar Dnipropetrovsk National University
  • O. N. Kunah Oles Honchar Dnipropetrovsk National University
  • V. A. Novikova Oles Honchar Dnipropetrovsk National University
Keywords: soil animals, ordination, RLQ-analysis, ecomorphs, soil penetration resistance


We revealed the functional groups of the animals of sod pinewood soils (arena of the river Dnepr in the "Dneprovsko-Orelsky" Nature Reserve) on the basis of cluster analysis of the RLQ-axes received as result of interaction of matrix of community, matrix of edaphic parameters and matrix of ecomorphs of soil animals. The quantitative account of soil mesofauna has allowed us to establish that the community of animals inhabiting sod pinewood soils is represented by 20 species at a density of 68.9 ± 14.6 ind./m2, 8 forms were identified at the level of genus, family or order. Two species were represented by their larval and imago phases (Anatolica eremita (Steven, 1829) and Calathus ambiguus (Paykull, 1790)). A count of animals conducted in an alternative way has allowed us to expand the list to 38 species or forms at species level. The level of abundance and diversity for sod pinewood soils on the arena is not high compared with other types of soils of the arena of the river Dnepr. This result shows that the community has a simplified ecological structure. The prevailing ecological structure of the community can be characterised as steppe, xerophilous, oligotrophocoenomorphic. Anecic animals are absent from the topomorphic structure and saprophagous animals absent from the trophic structure. Only additional collection by alternative methods has allowed us to establish the presence in the community of saprophagous and anecic animals. The latter ecological group is represented by the extremely mobile vertebrate species Pelobates fuscus. The foromorphic structure of the community differs by its great variety. In this structure various strategies of animals’ movement through the soil are proportionately represented. On the one hand, we see various ways of movement of herpetobiont animals, mainly insect imagoes, which as a whole differ in their considerable migratory potential. This circumstance staticizes the historical reasons for the formation of the studied community. On the other hand, in the community there are various strategies of movement in the soil that allow us to assume or determine the reasons or causes of structurization of an ecological niche. Environmental factors are described by two groups of indicators, edaphic properties and values of phytoindicator scales. The mesopedobionts community structure is presented as a classical matrix of species/sampling points. The ecology of communities is principally focused not on taxonomic features but on biological properties (traits) of species. Such features can act on ecomorphs of soil animals. The direct functional analysis of relationship of biological properties of species with variables of environment by means of data on the abundance of species demands association of three matrixes of data. Such problem can be tackled by means of the RLQ-analysis. A key aspect of structurization of communities of soil mesofauna is differentiation in trophic traits. The organisation of a community of soil animals in an ecological space set by axes RLQ can be displayed in the form of a natural variation of RLQ-axes in geographical space. Everything in the RLQ is represented, as follows from the mathematical nature of this generalisation, an independent aspect of the coordinated variation of structure of a community of soil animals, properties of environment and ecomorphic features of mesopedobionts. 


Amarasekare, P., 2003. Competitive coexistence in spatially structured environments: A synthesis. Ecol. Lett. 6, 1109–1122.

Baljuk, J.A., Kunah, O.N., Zhukov, A.V., Zadorozhnaja, G.A., Ganzha, D.S., 2014. Аdaptivnaya strategiya otbora prob dlya otsenki prostranstvennoj organizatsii soobshhestv pochvennykh zhivotnykh urbanizirovannykh territorij na razlichnykh ierarkhicheskikh urovnyakh [Sampling adaptive strategy and spatial organisation estimation of soil animal communities at various hierarchical levels of urbanised territories]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 4(3), 8–33 (in Russian).

Belgard, A.L., 1950. Lesnaya rastitelnost’ yugo-vostoka USSR [Forest vegetation of the south-east of the UkrSSR]. Izd-vo KGU, Kiev (in Russian).

Belyea, L.R., Lancaster, J., 1999. Assembly rules within a contingent ecology. Oikos 86, 402–416.

Bernhardt-Romermann, M., Romermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W., Stadler, J., 2008. On the identification of the most suitable traits for plant functional trait analyses. Oikos 117, 1533–1541.

Blanchet, F.G., Bergeron, J.A.C., Spence, J.R., He, F., 2013. Landscape effects of disturbance, habitat heterogeneity and spatial autocorrelation for a ground beetle (Carabidae) assemblage in mature boreal forest. Ecography 36, 636–647.

Borcard, D., Legendre, P., 1994. Environmental control and spatial structure in ecological communities: an example using oribatid mites. Environ. Ecol. Stat. 1, 37–61.

Borcard, D., Legendre, P., Avois-Jacquet, C., Tuosimoto, H., 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85, 1826–1832.

Brind’Amour, A., Boisclair, D., Dray, S., Legendre P., 2011. Relationships between species feeding traits and environmental conditions in fish communities: A three-matrix approach. Ecol. Appl. 21(2), 363–377.

Brind’Amour, A., Boisclair, D., Legendre, P., Borcard, D., 2005. Multiscale spatial distribution of a littoral fish community in relation to environmental variables. Limnol. Oceanogr. 50(2), 465–479.

Brygadyrenko, V.V., 2015. Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava) 34(4), 90–102.

Brygadyrenko, V.V., Fedorchenko, D.О., 2008. Morfologichna minlyvist’ populjacii’ Carabus hungaricus scythus (Coleoptera, Carabidae) v umovah ostrova Hortycja (Zaporiz’ka oblast’) [Morphological variability of populations Carabus hungaricus scythus (Coleoptera, Carabidae) on the Кhortitsa island (Zaporizhzhya province)]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 16(1), 20–27 (in Ukrainian).

Brygadyrenko, V.V., Solovjov, S.V., 2007. Vplyv pervynnogo g'runtoutvorennja u zaplavnyh lisah Dniprovs'ko-Oril's'kogo pryrodnogo zapovidnyka na strukturu gerpetobiju [Effect of initial soil in floodplain forests of the Dnieper-Oril's'ke Nature Reserve on the litter invertebrates communities structure]. Pynannia Bioidycacii ta Ecologii 12(1), 34–45 (in Ukrainian).

Cadotte, M.W., Fukami, T., 2005. Dispersal, spatial scale and species diversity in a hierarchically structured experimental landscape. Ecol. Lett. 8, 548–557.

Calinski, T., Harabasz, J., 1974. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27.

Chase, J.M., 2003. Community assembly: When should history matter? Oecologia 136, 489–498.

Decaëns, T., Jiménez, J.J., Rossi, J.-P., 2009. A null-model analysis of the spatio-temporal distribution of earthworm species assemblages in Colombian grasslands. J. Trop. Ecol. 25(4), 415–427.

Decaëns, T., Rossi, J.-P., 2001. Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography 24(6), 671–682.

Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.

Doledec, S., Chessel, D., Ter Braak, C.J.F., Champely, S., 1996. Matching species traits to environmental variables: A new three-table ordination method. Environ. Ecol. Stat. 3, 143–166.

Drake, J.A., 1990. Communities as assembled structures: Do rules govern pattern? Trends Ecol. Evol. 5, 159–164.

Dray, S., Legendre, P., 2008. Testing the species traits-environment relationships: The fourth-corner problem revisited. Ecology 89, 3400–3412.

Dray, S., Legendre, P., Peres-Neto, P., 2006. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecol. Model. 196, 483–493.

Dray, S., Pettorelli, N., Chessel, D., 2002. Matching data sets from two different spatial samples. J. Veg. Sci. 13, 867–874.

Ellwood, M.D.F., Manica, A., Foster, W.A., 2009. Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecol. Lett. 12, 277–284.

Ettema, C.H., Yeates, G.W., 2003. Nested spatial biodiversity patterns of nematode genera in a New Zealand forest and pasture soil. Soil Biol. Biochem. 35(2), 339–342.

Franks, A.J., Yates, C.J., Hobbs, R.J., 2009. Defining plant functional groups to guide rare plant management. Plant Ecol. 204(2), 207–216.

Fukami, T., 2010. Community assembly dynamics in space. In. Verhoef, H.A., Morin, P.J. (ed.) Community ecology: Processes, models, and applications. Oxford University Press, Oxford, 45–54.

Fukami, T., Dickie, I.A., Wilkie, P., Paulus, B.C., Park, D., Roberts, A., Buchanan, P.K., Allen, R.B., 2010. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 13, 675–684.

Ganzha, D.S., Kunah, O.N., Zhukov, A.V., Novikova, V.A., 2015. Ekomorficheskaya organizatsiya chernoklenovnikov v psamofilnoy stepi na arene r. Dnepr [Ecomorphic organisation of Acer tataricum biocoenosis in sand steppes on arena of the river Depr]. Pitannya Stepovogo Lisoznavstva ta Lisovoyi Rekultivatsiyi Zemel 44, 110–126 (in Russian).

Gilyarov, M.S., 1949. Osobennosti pochvyi kak sredyi obitaniya i ee znachenie v evolyutsii nasekomyih [Pecularities of the soil as environment and its role in the insects evolution]. Izd-vo AN SSSR, Moscow (in Russian).

Gilyarov, M.S., 1970. Zakonomernosti prisposobleniya chlenistonogih k zhizni na sushe [Laws of the adaptation of arthropods by a life on a land]. Nauka, Moscow (in Russian).

Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427.

Hutchinson, G.E., 1965. The niche: An abstractly inhabited hypervolume. In: Hutchinson, G.E. (ed.) The ecological theatre and the evolutionary play. Yale Univ. Press., New Haven, 26–78.

Jiménez, J.J., Decaëns, T., Lavelle, P., Rossi, J.-P., 2014. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecol. 14, 26.

Jiménez, J.J., Decaëns, T., Rossi, J.-P., 2012. Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos 121, 915–926.

Kirby, K.N., Gerlanc, D., 2013. BootES: An R package for bootstrap confidence intervals on effect sizes. Behav. Res. Meth. 45, 905–927.

Konovalova, T.М., Zhukov, O.V., Pakhomov, O.Y., 2010. GIS-podkhod dlya otsenki izmenchivosti elektroprovodnsti pochvy pod vliyaniyem pedoturbatsionnoy aktivnosti slepysha (Spalax microphthalmus) [Gis-approach for variability assessment of soil electric conductivity under pedoturbation activity of mole rat (Spalax microphthalmus)]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 18(1), 58–66.

Kulbachko, Y., Loza, I., Pakhomov, O., Didur, O., 2011. The zoological remediation of technogen faulted soil in the industrial region of the Ukraine Steppe zone. In: Behnassi, M. et al. (eds.), Sustainable agricultural development. Springer Science + Business Media, Dordrecht, Heidelberg, London, New York, 115–123.

Kunah, O.N., Tryfanova, M.V., Ganzha, D.S., 2014. Zoo- i fitoindikatsiya roli avtotrofnoj i geterotrofnoj konsortsij v organizatsii biogeotsenoza [Zooindication and phytoindication of autotrophic and heterotrophic consortia of biogeocoenoses organization]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 4(2), 115–141 (in Russian).

Kunah, O.N., Zhukov, A.V., Balyuk, Y.A., 2013. Prostranstvennaya organizatsiya soobschestva mezopedobiontov urbotehnozema [The spatial organization of the urbotechnozem mesopedobionts]. Gruntoznavstvo 14(3), 76–97 (in Russian).

Kunah, O.N., Zhukov, A.V., Balyuk, Y.A., 2013. Prostranstvennaya organizatsiya soobschestva pochvennyih mezopedobiontov v usloviyah rekreatsionnoy nagruzki v lesoparkovom nasazhdenii [The spatial organization of the soil mesopedobionts under recreation impact]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3(3), 274–286 (in Russian).

Kunah, O.N., Zhukov, A.V., Balyuk, Y.A., 2013. Prostranstvennoe varirovanie ekomorficheskoy strukturyi pochvennoy mezofaunyi urbazema [The spatial variation of soil mesofauna ecomorphic structure in urbazem]. Scientific Notes of Taurida National V.I. Vernadsky University. Series Biology and Chemistry 26(65), 107–126 (in Russian).

Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16(5), 545–556.

Legendre, P., 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74(6), 1659–1673.

Lysenko, H.M., Kolomiychuk., V.P., Shapoval, V.V., 2010. Synfitoindykatsiyna otsinka roslynnykh uhrupovan’ Berdyans’koho polihonu (Zaporiz’ka obl.) ta yikh polozhennya v ekolohichnomu kontynuumi Prychornomors’kykh (Pontychnykh) stepiv [Synphytoindicational estimation of plant communities of Berdyansk shooting-range (Zaporizhzhya region) and their position in ecological balance of Prychornomorsk (Pont) steppes]. Chornomorski Botanical Journal 6(3), 338–351 (in Ukranian).

Matveev, N.M., 2011. Osnovyi stepnogo lesovedeniya professora A.L. Belgarda i ih sovremennaya interpretatsiya [Professor’s A.L. Belgard basis of the steppe forest science in modern context]. Samara University Press, Samara (in Russian).

Medvedev, V.V., 2009. Tverdost pochvyi [Soil penetration resistance]. Gorodskaya Tipografiya, Kharkov (in Russian).

Minden, V., Andratschke, S., Spalke, J., Timmermann, H., Kleyer, M., 2012. Plant-trait environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14, 183–192.

Moonen, A.-C., Barberi, P., 2008. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 127, 7–21.

Ni, J., 2003. Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia. J. Arid Environ. 53(4), 501–516.

Rossi, J.P., 2003. Clusters in earthworm spatial distribution. Pedobiologia 47, 490–496.

Rossi, J.-P., Delaville, L., Quénéhervé P., 1996. Microspatial structure of a plant-parasitic nematode community in a sugarcane field in Martinique. Appl. Soil Ecol. 3, 17–26.

Santoul, F., Cayrou, J., Mastrorillo, S., Cereghino, R., 2005. Spatial patterns of the biological traits of freshwater fish communities in south-west France. J. Fish Biol. 66, 301–314.

Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185(4145), 27–39.

Seebacher, D., Dirnböck, T., Dullinger, S., Karrer, G., 2012. Small-scale variation of plant traits in a temperate forest understory in relation to environmental conditions and disturbance. STAPFIA 97, 153–168.

Shtirts, А.D., 2015. Ekologicheskaya struktura naseleniya pantsirnykh kleshhej (kar'er «Osnovnoj», Donetskaya oblast') [The ecological structure of oribatid mites population (‘Osnovnoy’ quarry, Donetsk region)]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 5(2), 16–30 (in Russian).

Tarasov, V.V., 2005. Flora Dnipropetrovs’koyi i Zaporiz’koyi oblastey [Dnipropetrovsk an Zaporozhie regions flora]. Dnipropetrovsk University Press, Dnipropetrovsk (in Ukranian).

Tarasov, V.V., 2012. Flora Dnipropetrovs’koyi i Zaporiz’koyi oblastey [Dnipropetrovsk an Zaporozhie regions flora]. Second ed. Lira, Dnipropetrovsk (in Ukranian).

Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. Rebelo, T., 2004. Relating plant traits and species distributions along bioclimatic gradients for Leucadendron taxa. Ecology 85, 1688–1699.

Vadyunina, A.F., Korchagina, Z.A., 1986. Metodyi issledovaniya fizicheskih svoystv pochv [Methods of research of physical properties of soils]. Agropromizdat, Moscow (in Russian).

Weslien, J., Djupström, L.B., Schroeder, M., Widenfalk, O., 2011. Long-term priority effects among insects and fungi colonizing decaying wood. J. Anim. Ecol. 80, 1155–1162.

Whalen, J.K., 2004. Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Quebec, Canada. Appl. Soil Ecol. 27(2), 143–151.

Wilson, J.B., Habiba, G., 1995. Limitation to species coexistence: Evidence for competition from field observations, using a patch model. J. Veg. Sci. 6, 369–376.

Zhukov, A.V., Kunah, O.N., Balyuk, Y.A., 2015. Prostranstvennaya organizatsiya soobschestva mezopedobiontov gorodskoy pochvyi [The spatial organisation of city soils mesopedobionts community]. Kharkov Entomological Society Gazette 23(1), 46–57 (in Russian).

Zhukov, O.V., 2009. Ekomorfichnyy analiz konsortsiy gruntovykh tvaryn [Ecomorphic analysis of the soil animals consortias]. Vyd-vo «Svidler A. L.», Dnipropetrovsk (in Ukranian).

Zhukov, O.V., 2010. Ekomorfy Bel’harda–Akimova ta ekolohichni matrytsi [Belgard-Akimov ecomorphes and ecological matrixes]. Ecology and Noospherology 21(3–4), 109–111 (in Ukranian).