Accumulation of sulfur and glutathione in leaves of woody plants growing under the conditions of outdoor air pollution by sulfur dioxide

Keywords: sanitary protection zones; green plantations; accumulation; sulfur compounds

Abstract

In the course of human industrial activity, atmospheric air is polluted by gaseous pollutants, among which sulfur compounds, and sulfur dioxide (SO2) in particular, play a key role. Vegetation is a universal filter that is capable, in conjunction with certain technical facilities, of protecting the environment from pollution by the ingredients of industrial emissions. The purpose of this work is to determine the level of accumulation of sulfur and glutathione in the leaves of woody plants growing in the areas of sanitary protection zones of enterprises of the city of Zaporizhzhya in order to develop recommendations for the creation of an effective biofilter. The objects of the study were the woody plant species growing in the area of protective plantations of a number of enterprises in Zaporizhzhya: RE Zaporizhzhya Titanium & Magnesium Combine, Zaporizhzhya Aluminium Plant PJSC, Zaporizhzhya Abrasive Plant PJSC, Zaporizhstal PJSC, Zaporizhzhya Ferroalloy Plant PJSC, Zaporizhvohnetryv PJSC, PrJSC "Ukrgrafit" and Zaporizhtransformator PJSC. The control area was a forest belt located 12 km away from the source of pollution. At each site 5 model trees of a given age category of each species were selected. The leaves needed in order to determine the sulfur content were taken from the south-eastern side of the crown at a distance of 2 m above the soil surface under the same lighting conditions. We have established that the accumulation of sulfur in leaves of woody plants which grow under the conditions of outdoor air pollution by sulfur dioxide (SO2) occurs during the entire vegetation period, with the young leaves that have just finished growing being the most affected. The maximum amount of sulfur is observed at the end of the growing season. The greater concentration of sulfur in the leaves of woody plants in the areas of sanitary protection zones of industrial enterprises is linked to the higher level of gaseous pollutant emissions in the atmosphere of a given enterprise, but the degree of increase in the content of the pollutant in the leaves of plants of various protective plantations is not proportional to the quantitative indicators of the level of sulfur dioxide (SO2) in the air. Woody plant species were divided into three groups according to the amount of sulfur accumulated in their leaves: І – the maximum level – Betula pendula, Tilia cordata, Salix alba, Robinia pseudoacacia, Populus alba, P. simonii, P. nigra, ІІ – medium – Acer platanoides, A. negundo, Fraxinus lanceolata, Catalpa bignonioides, ІІІ – the smallest – Morus alba, Ailanthus altissima, Elaeagnus angustifolia and Ulmus carpinifolia. The increase in sulfur content in the leaves of woody plants growing in the area of sanitary protection zones is consistent with the increase in glutathione content compared to our control parameters, which is not only of high physiological significance, but its formation can also be one of the ways of metabolizing this element. The obtained results can be used for the development of recommendations with the purpose of selecting the assortment of woody plants for the reconstruction of green plantations growing in the area of sanitary protection zones of enterprises. In a subsequent study, the accumulation of gaseous pollutants such as chlorine and phenol in the leaves of woody plants growing in and around protective forest belts will be examined.

References

Al-Jahdali, M. O., & Bin Bisher, A. S. (2008). Sulfur dioxide (SO2) accumulation in soil and plant’s leaves around an oil refinery: A case study from Saudi Arabia. American Journal of Environmental Sciences, 4(1), 84–88.


Baciak, M., Warmiński, K., & Bęś, A. (2015). The effect of selected gaseous air pollutants on woody plants. Leśne Prace Badawcze, 76(4), 401–409.


Barahtenova, L. A. (1995). Vozdushnye polljutanty i obmen sery u sosny obyknovennoj, porogovye koncentracii, jeffekty zashhity [Air pollutants and gaseous exchange of sulfur of a Scots pine tree, threshold concentrations, impact of protective measures]. Contemporary Problems of Ecology, 1995(6), 478–494 (in Russian).


Basovic, M., Prica, V., Velagic-Habul, E., & Bogdanovic, Z. (1975). Absorption sposobnosti listanekih listopadnich parkovchih kultura za SO2 u aerozagadenoj sredini. Golišn Biological Institute, Univerzitet u Sarajevu, 28, 29–38.


Bessonova, V. P. (1993). Jeffektivnost' osazhdenija pylevyh chastic list'jami drevesnyh i kustarnyh rastenij [Efficacy of deposition of dust particles by leaves of shrubs and woody plants]. In: Oleksyenko, T. D. (Ed.). Voprosy zashhity prirodnoj sredy i ohrany truda v promyshlennosti. Dnepropetrovskij Gosudarstvennyj Universitet, Dnepropetrovsk. Pp. 34–37 (in Russian).


Bessonova, V. P., & Zajceva, І. A. (2008). Vmist vazhkyh metaliv u lysti derev i chagarnykiv v umovah tehnogennogo zabrudnennja riznogo pohodzhennja [The content of heavy metals in the leaves of trees and shrubs under the conditions of man-made pollution of various origins]. Problems of Bioindications and Ecology, 13(2), 62–77 (in Ukrainian).


Brandle, K., & Schnyder, J. (1970). Abtransport von schwefelverbindungen as bohenprimäfrblattern (Phaseolus vulg.) nach begasung min H2S. Experimentia Bales, 26, 112–123.


Bytnerowicz, A., Olszyk, D. M., Kats, G., Dawson, P. J., Wolf, J., & Thompson, C. R. (1987). Effects of SO2 on physiology, elemental content and injury development of winter wheat. Agriculture, Ecosystems and Environment, 20(1), 37–47.


Cicek, A., & Koparal, A. S. (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tuncbilek Thermal Power Plant. Chemosphere, 57(8), 1031–1036.


Cornish, L. (1968). Contribution á l’étude de l’absortion du soufe du dioxyde de soufe. Аnnals of Physiology Vegetable, 10(2), 99–112.


Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.


Fried, M. (1949). The absorption of sulphur dioxide by plants as shown by the use of radioactive sulphur. Proceedings of the Soil Science Society of America, 13(2), 135–138.


Getko, N. V. (1989). Rastenija v tehnogennoj srede [Plants in an industrial environment]. Nauka i Tehnika, Minsk (in Russian).


Godzik, S. (1976). Pobieranie 35SO2 powietrza i rozmieszczenie 35Su niektoh gatunkorzcw. Badenia porownawcze. Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk, 16, 159.


Guderian, R. (1979). Zagrjaznenie vozdushnoj sredy [Air pollution]. Mir, Moscow (in Russian).


Heber, U., & Hüve, K. (1997). Action of SO2 on plants and metabolic detoxification of SO2. International Review of Cytology, 177, 255–286.


Hijano, C. F., Domínguez, M. D., Gimínez, R. G., Sínchez, P. H., & García, I. S. (2005). Higher plants as bioindicators of sulphur dioxide emissions in urban environments. Environmental Monitoring and Assessment, 111, 75–88.


Hock, N. B., & Anderson, J. N. (1978). Chloroplast cystene syntheses of Trifolium repens and Pisum sativum. Photochemistry, 17(5), 879–885.


Hwangbo, J. K., Lee, C. S., & Kim, J. H. (2000). Tolerance of several woody plants to sulphur dioxide. Korean Journal of Biological Sciences, 4(4), 337–340.


Il'kun, G. M., & Morgun, V. V. (1980). Pogloshhenie i vydelenie ionov kornjami rastenij v zagrjaznennoj atmosfere [The absorption and release of ions by the roots of plants in a polluted atmosphere]. Fiziologija Rastenij, 27(1), 150–156 (in Russian).


Il'kun, G. V. (1978). Zagrjazniteli atmosfery i rastenija [Plants and outdoor air pollutants]. Naukova Dumka, Kiev (in Russian).


Kaljuzhnyj, D. N. (1981). Sanitarnaja ohrana atmosfernogo vozduha ot vybrosov predprijatij chernoj metalurgii [Sanitary protective measures with regard to atmospheric air and its pollution by emissions of the enterprises of ferrous metallurgy industry]. Gosmedizdat, Kiev (in Russian).


Kapeljush, N. V., & Bessonova, V. P. (2007). Seredoochishhuval'na rol' Platanus orientalis u nasadzhennjah sanіtarno-gіgіjenіchnogo priznachennja [The role of Platanus orientalis in sanitary and hygienic plantations as a universal biofilter]. Vіsnyk of Dnіpropetrovsk Unіversity, Biology, Ecology, 15(1), 59–66 (in Ukrainian).


Kok, L. J., Maas, F. M., Godeke, J., Haaksma, A. B., & Kuiper, P. J. C. (1986). Glutathione, a tripeptide which may function as a temporary storage compound of excessive reduced sulphur in H2S fumigated spinach plants. Plant and Soil, 91(3), 349–352.


Korshikov, I. I., Kotov, B. C., Miheenko, I. P., Ignatenko, A. A., & Chernysheva, L. V. (1995). Vzaimodejstvie rastenij s tehnogenno zagrjaznennoj sredoj. [Plant - environment interactions under the conditions of man-made pollution]. Naukova Dumka, Kiev (in Russian).


Kozjukina, Z. T., Mihajlov, O. F., Miljan, M. N., & Moroz, N. I. (1980). Rol' rastenij v biologicheskoj chistke atmosfery ot letuchih toksikantov [The role of plants in the biological purification of atmosphere from volatile toxicants]. In: Gazoustojchivost' Rastenij. Nauka, Novosibirsk. Pp. 179–180 (in Russian).


Kulagin, J. Z. (1970). Gazoustojchivost' drevesnyh rastenij i nakoplenie sery v ih list'jah [Gas resistance of woody plants and sulfur accumulation in their leaves]. In: Kolesnikov, B. P., & Mamaev, S. A. (Eds.). Rastitel'nost' i Promyshlenye Zagrjaznenija. Ural'skij Gosudarstvennyj Universitet, Sverdlovsk. Pp. 36–41 (in Russian).


Li, Z. G., Min, X., & Zhou, Z. H. (2016). Hydrogen sulfide: A signal molecule in plant cross-adaptation. Frontiers in Plant Science, 26(7), 1–12.


Likus-Cieślik, J., & Pietrzykowski, M. (2017). Vegetation development and nutrients supply of trees in habitats with high sulfur concentration in reclaimed former sulfur mines Jeziórko (Southern Poland). Environmental Science and Pollution Research International, 24(25), 20556–20566.


Liu, Y., Zhang, Y., Li, C., Bai, Y., Zhang, D., Xue, C., & Liu, G. (2018). Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China. Environmental Pollution, 240, 661–669.


Madamanchi, N. R., & Alscher, R. G. (1991). Metabolic bases for differences in sensitivity of two pea cultivars to sulfur dioxide. Journal of Plant Physiology, 97, 88–93.


Malhotra, S. S., & Hocking, D. (1976). Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytologist, 76(2), 227–237.


Martynov, V. O., & Brygadyrenko, V. V. (2017). The influence of synthetic food additives and surfactants on the body weight of larvae of Tenebrio molitor (Coleoptera, Tenebrionidae). Biosystems Diversity, 25(3), 236–242.


Mitchell, R., Maher, B. A., & Kinnersley, R. (2010). Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species analyses. Environmental Pollution, 58(5), 1472–1480.


Mochalova, A. D. (1975). Spektrofotometricheskij metod opredelenija sery v rastenijah [Spectrophotometric method for the determination of sulfur content in plants]. Sel'skoe Hozjajstvo za Rubezhom, 4, 17–27 (in Russian).


Nikolaev, G. V. (1963). Peredvizhenie fosfora, kal'cija i sery ot odnih rastenij k drugim cherez ih kornevye vydelenija [Translocation of phosphorus, calcium and sulfur from one plant to another by means of root excretions]. Fiziologija Rastenij, 10(4), 441–447 (in Russian).


Okpodu, C. M., Alscher, R. G., Grabau, E. A., & Cramer, C. L. (1996). Physiological, biochemical and molecular effects of sulfur dioxide author links open overlay panel. Journal of Plant Physiology, 148(3–4), 309–316.


Paul, R. (1974). L'absorption foliaire Le dioxyde De soufre atmosoherique et son utilisation eventuelle par la plante. Annual Gembloux, 80(2), 95–103.


Paul, R. (1976). Translocation du soufre d’origine atmospherique dons la plante. Bulletin de la Société Royale de Botanique de Belgique, 109(1), 13–23.


Pöykiö, R., & Torvela, H. (2001). Pine needles (Pinus sylvestris L.) as a bioindicator of sulphur and heavy metal deposition in the area around a pulp and paper mill complex at Kemi, Northern Finland. International Journal of Environmental Analytical Chemistry, 79, 143–154.


Roberts, B. R. (1974). Foliar sorption of atmospheric sulfur dioxside by woody plants. Evironmental Pollution, 7(2), 133–140.


Schiff, J. A., & Hodson, R. C. (1973). The metabolism of sulfate. Annual Review of Plant Biology, 24, 381–414.


Sergejchik, S. A. (1997). Rastenija i jekologija [Ecology and plants]. Uradzhaj, Minsk (in Russian).


Sergejchik, S. A., Sergejchik, A. A., & Sidorovich, E. A. (1998). Jekologicheskaja fiziologija hvojnyh porod Belarusi v tehnogennoj srede [Environmental physiology of coniferous plants of Belarus in a technogenic environment]. Belaruskaja Nauka, Minsk (in Russian).


Simon, E., Braun, M., Vidie, A., Boggio, D., Fabian, I., & Tothemérész, B. (2011). Air pollution assesment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Evironmental Pollution, 159, 1229–1233.


Smit, U. H. (1985). Les i atmosfera: Vzaimodejstvie mezhdu lesnymi ekosistemami i primesjami atmosfernogo vozduha [Atmosphere and forest: Interactions between forest ecosystems and impurities in the outdoor air]. Progres, Moscow (in Russian).


Stratu, A., Costică, N., & Costică, M. (2016). Wooden species in the urban green areas and their role in improving the quality of the environment. Present Environment and Sustainable Development, 10(2), 173–184.


Subba, J. R., Thammakhet, C., Thavarungkul, P., & Kanatharana, P. (2016). Distributions of SO2 and NO2 in the lower atmosphere of an industrial area in Bhutan. Journal of Environmental Science and Health, Part A, 51(14), 1278–1288.


Tarabrin, V. P., Chernyshova, L. V., Makogonov, B. C., & Honahbaev, V. N. (1971). Povrezhdenie rastenij sernistym angidridom [Sulfur anhydride damage to plants]. Rastitel'nost' i Promyshlennaja Sreda. Naukova Dumka, Kiev. Pp. 21–29 (in Russian).


Tarabrin, V. P., Kondratjuk, V. N., & Bashkatov, V. T. (1986). Fitotoksichnost' organicheskih i neorganicheskih zagrjaznitelej [Phytotoxicity of organic and inorganic pollutants]. Naukova Dumka, Kiev (in Russian).


Tripodo, P., Andelini, R., Mazzoleni, S., & Nanes, F. (1992). Foliar peroxidase activity and sulfhate contontis as indicators of the urban pollution dimate. Annals of Botany, 50, 49–61.


Tuygun, G. T., Altuğ, H., Elbir, T., & Gaga, E. E. (2017). Modeling of air pollutant concentrations in an industrial region of Turkey. Environmental Science and Pollution Research International, 24(9), 8230–8241.


Vasfilov, S. P. (2013). Dinamika soderzhanija sery v list'jah berezy v hode vegetacii v uslovijah zagrjaznenija vozduha [Dynamics of sulfur content in birch leaves during the vegetation period under the conditions of air pollution]. UT Research Journal. Natural Resource Use and Ecology, 12, 103–111 (in Russian).


Zhang, X., Zhou, P., Zhang, W., Zhang, W., & Wang, Y. (2013). Selection of landscape tree species of tolerant to sulfur dioxide pollution in Subtropical China. Open Journal of Forestry, 3(4), 104–108.

Published
2018-12-16
Section
Articles