Recycling and decontamination of organic waste in Ukraine: Current state, technologies and prospects for the biogas industry

*Dnipro State Agrarian and Economic University, Dnipro, Ukraine
**Czech University of Life Sciences Prague, Prague, Czech Republic
***Sumy State University, Sumy, Ukraine
****Oles Honchar Dnipro National University, Dnipro, Ukraine

Global and regional competition for natural resources, particularly for land and water, food and fodder, takes place in the context of a dire necessity to limit greenhouse gas emissions and is becoming more and more pressing every year. Environmental soundness, sustainability and security are becoming more relevant and are considered as key elements of modern agricultural enterprises' operation. The concept of the coming years in animal husbandry is non-waste production, which consists in the complete recycling of waste, and if it is impossible – in their safe disposal. If the waste cannot be reused or upcycled, such waste should be transformed into energy. The production of biogas and biomethane contributes to solving two global problems: the growing amount of organic waste produced by modern economies and the negative impact of CO2 emissions on climate change and the environment. We considered the social and economic prerequisites developed in the main sectors of contemporary Ukrainian livestock breeding in terms of potential sources of raw materials for biogas production. The main focus of the study is on the elements of greening of national agriculture, production and on the prospects for the development of the biogas industry in Ukraine. Favourable conditions for the development of biogas technologies have been identified among large producers of livestock products (dairy cattle breeding, swine breeding and poultry farming). In other sectors, opportunities are still limited due to economic, social and legislative difficulties. The paper also analyses the prospects for the use of various means of combating pathogens for the processing and disposal of organic waste. The main role of anaerobic digestion as an alternative method for the inactivation of dangerous pathogens responsible for infectious and parasitic diseases of animals and humans has been determined.

Keywords: biogas; organic waste processing; animal husbandry; pathogen inactivation.

Introduction

In recent decades, there has been a rapid development of intensive livestock farming concentrated around large urban agglomerations, posing a great social and environmental threat. Many of these farms are located near lakes, rivers, or the sea. The high concentration of animals and animal waste near densely populated areas and far from crop production (where there is a need for animal breeding by-products – manure as organic fertilizers) resulted in significant environmental problems. The scope of antibiotic application in agriculture is rapidly increasing and exceeds the use in medicine, which raises concerns about the possible impact of antimicrobial agents used in agriculture on human and animal health (Kasimanic-karn et al., 2021). However, the agriculture of the future will be based on the rejection of their application. Since Ukraine has everything necessary for the cultivation of organic products, unlike other countries, it will be advisable to add this competitive advantage to the national strategy of agricultural development. Programs to expand biodiversity through the breeding of rare unconventional animals will provide biologically adequate food products, animal feed, the demand for which is unlimited today, and the development of "green tourism" could additionally serve as a source of income (Zamlynskyi, 2019).

At a time when the whole world is trying to increase the share of organic agriculture, we are intentionally losing the valuable knowledge and practices related to crop rotation and use of organic fertilizers, which are crucial for preserving and rational use of soil cover and agroecosystems. Chernigation allows us to obtain a short-term economic effect, but has no prospects in the future, because the world is gradually abandoning such measures in favour of environmentally friendly and resource-saving projects (Zamlynskyi, 2019).

The livestock farming leads to emissions of 44% of anthropogenic methane (mainly as a result of intestinal fermentation of ruminants), 53% of anthropogenic nitrogen oxide (mainly from manure) and 5% of anthropogenic carbon dioxide. This contributes to global warming and provokes eutrophication of water bodies. Annually, billions of cubic meters of water vapour, carbon dioxide, ammonia, hundreds of thousands of cubic meters of hydrogen sulphide, tens of thousands of tons of dust and pathogenic microflora are released from livestock farms (Mykhalko, 2021).

Improper management and disposal of livestock waste poses a serious threat to the environment. Waste serves as a medium for the accumulation of pathogens that can spread and contaminate soils and the aquatic environment. Unprotected manure contributes to global warming by releasing large amounts of biometerne. Livestock manure can be valuable raw materials for biogas production, preventing the uncontrolled decomposition of such animal waste products, and, at the same time, can be a source for renewable energy production (Mignogna et al., 2023). Emissions of ammonia and nitrous oxide, as well as phosphates, heavy metals and pathogens found in livestock wastewater, can contribute to ecosystem dysfunction, resulting in adverse health effects for animals and agricultural
various sectors of the economy – such countries are forced to seek alternative energy infrastructure and the growing energy needs of the population and accumulated organic waste, limited natural fuel resources, underdeveloped Great Britain, Italy, etc.). Another example is the intensification of bioenergy research in rapidly developing countries (China, India, Malaysia, etc.). The reason for this is several factors: a significant amount of accumulated organic waste, limited natural fuel resources, underdeveloped energy infrastructure and the growing energy needs of the population and various sectors of the economy — such countries are forced to seek alternative options in bioenergy industry. Unfortunately, Ukraine today has a rather "modest" contribution of scientific publications despite having one of the greatest potentials in the world for the development of bioenergy. Taking into account the above and the prospects for the development of biogas technologies, the publication activity was analysed (Fig. 1) in terms of the selected research topic (according to the Scopus database). Thus, since the beginning of the 21st century, after a series of global economic crises, upon declaring and signing the international agreements to reduce greenhouse gas emissions and promote decarbonization, there has been a surge and an ongoing trend towards the development of alternative energy sources obtained from non-fossil mineral resources.

Fig. 1. Dynamics of publication activity related to research topics (according to Scopus data)

Search results for queries based on the keywords "Biogas & World", "Biogas & Europe" and "Biogas & Ukraine" indicate the following. It can be stated that the vast majority of publications in the world and in Europe are written by the authors from the countries that are significantly developed in terms of technologies and are directly involved in the development and supply of modern biogas plants to the global market (Germany, USA, Great Britain, Italy, etc.). Another example is the intensification of bioenergy research in rapidly developing countries (China, India, Malaysia, etc.). The reason for this is several factors: a significant amount of accumulated organic waste, limited natural fuel resources, underdeveloped energy infrastructure and the growing energy needs of the population and various sectors of the economy — such countries are forced to seek alternative options in bioenergy industry. Unfortunately, Ukraine today has a rather "modest" contribution of scientific publications despite having one of the greatest potentials in the world for the development of bioenergy through the livestock and crop industries. Therefore, the objective of this paper is to analyse the actual state, technologies for processing and disinfection of organic waste, as well as the prospects for the biogas industry in Ukraine.

Social and economic prerequisites for the introduction of biogas technologies in livestock breeding

In recent years, there has been a trend towards the development of highly profitable large agro-industrial associations with a closed-loop production cycle (from creating feed bases to processing meat and milk). They are gradually taking over and merging with their direct competitors in small and medium-sized businesses, entire villages are becoming deserted, the workforce is aging rapidly and young people are migrating from rural areas to large cities. Since the beginning of the twentieth century, about 75% of plant genetic diversity has been lost due to farmers worldwide abandoning a range of local crop varieties and breeds in favour of genetically uniform, high-yielding varieties (Zamlynskyi, 2019). Modern genetically modified animals cannot independently survive and reproduce in the wild. By constant selection, the variety of animals is constantly reduced, and only the farm animals that show the greatest increase in live weight in the shortest possible time are retained.

In Ukraine, an imbalance in favour of powerful agricultural producers of livestock products (cattle, swine and poultry breeding) persists. These producers are considered in this paper as the main potential producers of organic raw materials for biogas. Every year, the share of milk produced by households decreases, although it remains quite high (69%). At the same time, the volume of milk produced by agricultural enterprises does not change significantly. According to analysts, the proportion of milk sourced from the households will continue to decrease, due to raising of standards for the quality and safety of milk sent for industrial processing (Milostivyy et al., 2017).

In the total consumption of meat products in Ukraine, pork ranks second (after the consumption of poultry meat) making up approximately 32%. The primary focus of swine breeding intensification involves moving towards industrial practices, driven by innovations and investment. The essence of such a restructuring should lie in the re-equipment of pig farming complexes to an industrial standard, focusing on qualitative changes in the technology and organization of production lines, in the specialization and concentration of swine breeding, which will contribute to improving the quality of pork produced in Ukraine (Mykhalko, 2021). At the same time, the problem of reducing the environmental impact of pork production, compliance with high animal welfare standards and the ability to ensure the profitability of the sector is becoming more acute. There is no doubt that consumer interest in animal welfare around the world will grow (Mylostyvyy, 2023).

Over the past decade, the rate of decline in the number of cattle and pigs in households has increased significantly (by 11% and 45%, respectively) compared to agricultural enterprises (http://sdplatform.org.ua/blogs/farm). However, among the economic factors restraining the development of swine breeding, the increase in the cost of energy carriers and the rise of
cheap pork imports and reduction in its exports will also remain. An equally important reason for the stagnation of the industry was African swine fever, which forced commodity producers, especially medium-sized and small enterprises, to reduce their livestock either as a result of the detection of pathogens, or to slaughter early in order to prevent asset loss (Mykhalko, 2021).

According to FAO, in 2019, Ukraine ranked 9th among the countries of the world in terms of exports of shell eggs (3.7% of the global figure) and 11th for the volume of chicken meat exports (2.0% of the global volume). This is primarily due to the high concentration of poultry production, since more than 80% of poultry is kept on farms where its number exceeds 500 thousand birds. The high level of poultry concentration provides producers with a number of advantages due to the effect of scale of production. At the same time, it also has significant negative consequences. First of all, we are talking about environmental problems associated with pollution of the environment with waste related to poultry farming and slaughter products, and small businesses can succeed only by offering consumers products of less common types of poultry (turkeys, geese, ducks, quails, etc.). Organic poultry farming is a potentially attractive niche for small businesses (Yatsiv, 2021).

The potential of other livestock breeding sectors as a stable supply of raw materials for biogas production is quite low. In particular, sheep breeding, which can be considered as an important source of meat production (the share of lamb in the meat balance of the country is about 6.5%, and in some regions of the country it reaches 30%, where it is a necessary product for national dishes), is also characterized as being in a state of steady decline. The decrease in the production of mutton and goat meat is due to a decrease in the number of sheep, as well as a decrease in the production of sheep milk in recent years, in particular due to the higher competitiveness of dairy cattle farming compared to dairy sheep farming (Sisaknyk, 2021). Regarding goat breeding, its development is significantly slowed down due to the lack of documentary separation of this industry from sheep breeding and its recognition as a separate branch of livestock breeding. However, it is quite promising, as evidenced by an increase in the number of goats in agricultural businesses and a rise in consumer demand for goat milk, cheeses and other products. For example, the share of goat milk in the gross milk production of all types of farm animals has increased by 0.37% in recent years. However, to effectively manage the industry and increase the milk productivity of goats, it is necessary to create high-yield breeding herds and replenish the breeding base with valuable imported livestock of promising breeds (Fedonorovych et al., 2022).

The current state of rabbit meat production does not meet the minimum needs of the population of Ukraine: while the consumption rate for rabbit meat is 2 kg per capita, the actual average consumption is only 284 grams. The majority of rabbits (97.1%) is on private farms and only about three percent is on agricultural enterprises (Gonchar et al., 2020), which makes it impossible to consider this industry as a reserve for biogas production.

Despite the fact that the total potential of biomethane production in Ukraine is estimated at no less than 7.8 billion m³ (25% of the current natural gas consumption), biomethane production is not competitive in terms of the market price of natural gas and requires support. The payback period of most biogas projects in Ukraine, at best, is estimated at 5–6 years, and taking into account the efficiency – at least 7–8 years. At the same time, the main components of investment in biogas projects are the costs of the power generation unit (30–40%), the construction of reactors and other technological structures (35–45%), as well as technological equipment (15–25%). That is, only large enterprises can afford such technologies. In addition, a limiting factor for the development of biogas technologies is the fact that Ukrainian legislation does not have legally adopted standards for the construction and operation of individual biogas plants. In addition to an obvious environmental and economic effect achieved by the households through the use of individual biogas plants, it is necessary to take into account the social effect involving the improvement in health and well-being of the population (Pryshliak, 2021).

Biogas plants process the waste from the rural population, thereby improving the hygienic situation for individual users and society as a whole. It is also worth mentioning the improvement of the quality of food products grown using biofertilizers without the use of chemicals (Pryshliak, 2021). Potentially, thermal energy from co-generation unit (up to 60% of the generated thermal energy) and digestate (fermented mass) as a fertilizer or soil improver can also be the sources of additional income from the operation of a biogas plant. However, the crisis in the national economy, the complex geopolitical situation, internal political tension, and military actions have significant negative consequences for the investment climate in Ukraine, dramatically reducing the ability of agricultural enterprises to attract investment resources for active development, whether from internal or external sources (Ishchenko et al., 2021).

Under wartime conditions, when electricity is cut off, roads are closed, and supplies of feed are unavailable, it is almost impossible to organize the process and save the herd. Farmers are unable to carry out the standard feeding routines and provide the usual care for the animals. There is nowhere to deliver the products, since the chains of supply of raw materials for processing to enterprises are destroyed (Yatsiv, 2021). In addition, Ukraine was importing some feed types and veterinary drugs. Due to the war and logistical problems, it is currently impossible to carry out some of these purchases. Disruption of logistics chains has also affected Ukrainian producers of meat, dairy products and eggs, which were focused solely on the domestic market, because supply to the regions where hostilities are taking place is limited, or entirely impossible (https://agronews.ua/news/tvarynnyczvto-pid-chai-vijn-yto-postrazhav-najiblishe).

Despite the difficult situation, further development of the national agrarian sector should be considered in the context of the global strategy of efficient and sustainable agro-industrial production, where the first priority is not the profit of the owners, but ensuring the global food and environmental safety, protection of the rural population, the nutritional value and unconditional safety of food products, the resource-saving model of business engaged in the production and processing of agricultural products, and the preservation and improvement of the existing ecosystem, including through the rational utilization of livestock waste using biogas technologies.

Production and prospects of the biogas industry in Ukraine

Hostilities with constant shelling and destruction of hydropower facilities and energy infrastructure that operates on traditional (fossil) resources have caused an acute energy shortage. In this regard, food (Hapich & Onoprienko, 2024), water (Hapich et al., 2024) and energy security (Shahini et al., 2024) will be one of the key areas of development of the Ukrainian economy in the conditions of post-war recovery. This situation encourages wider adoption and actualizes the need for the development of alternative energy sources, primarily the biogas industry (Dadin et al., 2024). Particular attention to this problem was required due to the energy dependence of Ukraine and European states on Russian natural gas and other mineral resources.

In the pre-war period, Ukraine had significant energy generating capacities (nuclear power plants, thermal power plants, hydropower plants) and a developed energy infrastructure, which, first of all, ensured the functioning of industries and household consumption. As the economic and industrial potential has been lost, renewable energy sources are a promising area of energy sector development in Ukraine, which will meet the local needs of individual households or businesses (Pryshliak et al., 2024). The constant increase in energy prices and the need to develop environmental protection technologies stimulates energy generation through the use of different types of organic waste as biofuels (Chubur et al., 2022).

Biogas production is one of the solutions to the problem of the increasing accumulation of organic waste of agricultural enterprises. Also, this partially addresses the urgent need to reduce global greenhouse gas emissions in line with Ukraine's implementation of the Paris Climate Agreement. Following global trends and turning organic waste into a renewable energy resource, biogas production in Ukraine provides promising opportunities for the chain as follows: continuous use of resources → meeting the growing demand for power supply services → ensuring environmental benefits (safety).

As for Ukraine, according to the data provided (UAIBO Analytics, https://uaibo.org/en/materials/uaibo-analytics), as of 2023, 68 biogas plants with a total capacity of 135 MW operate in Ukraine. The production of biogas is mainly provided by five types of raw materials (Fig. 2).
At the same time, the waste from the livestock sector in the general structure is about 22%. In general, the total potential of biomethane production (enriched biogas) in Ukraine (Fig. 3) through the use of livestock waste is estimated to be about 1 billion m3 of CH$_4$ (Geletukha et al., 2022). Given the structure of operation, more than a half of biomethane can be produced by poultry breeding and almost a third – by swine breeding. Other species (cattle breeding, goat breeding, sheep breeding) make up about 20% of the total structure.

Fig. 2. Structure of raw materials (a) used for biogas production in Ukraine and potential biomethane production (b) from livestock waste (million m3 CH$_4$; %) (Dudin et al., 2024)

The peculiarity of the livestock industry in Ukraine is that about 75% of cattle and 52% of pigs are concentrated in the private sector, where the average size of microfarms is up to 20 cows and up to 200 pigs. This highlights the prospects and relevance of developing small biogas plants to meet the own needs of households or small communities (settlements).

Currently, for the conditions of Ukraine, there are several insufficiently resolved and regulated issues related to tariffs and greening of biogas production process. With regard to environmental protection, for example, the EU has a significant number of directives and regulations of the European Parliament (Document 32008L0098: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives; Document 32009R1069: Regulation (EC) No1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive Text with EEA relevance) along with national regulations. They are aimed at reducing greenhouse gas emissions and preventing the negative impact of livestock waste on environmental components.

The main requirements related to technological operations with manure are to ensure (1) the safety of key components of the environment (water, air, soil) (2) total decontamination, (3) conversion of chemical elements

Fig. 3. Regional distribution of biomethane production potential (according to Geletukha et al. (2022))
achieve these requirements, the processing of manure by methane digestion is the most fully compliant. The economic component of the efficiency of modern and promising biogas plants operating in Ukraine depends on the size of investments, operating costs, the amount of biogas and electricity that can be obtained with it. The main income from the operation of the biogas plant is formed through the sale of electricity at the "green" tariff, thermal energy and liquid organic fertilizers. According to studies by Dudin et al. (2024), the average investment cost of a biogas plant with an electrical capacity of up to 75 kW is 9,000€/kW, in contrast to large plants with a capacity of 1,000 kW and implementation costs of 3,750 €/kW. In Ukraine, the estimated payback period of projects in small households is about 10–12 years. At the same time, the general structure of the revenue is as follows: (1) the cost of electric power sold is ~50%, (2) thermal energy is ~20%, (3) liquid organic fertilizers are ~30%.

The sale of organic fertilizers is a generally accepted European practice, which is contradictory in the conditions in Ukraine, since there is practically no legal regulation on the livestock waste. If consistency with EU regulations is ensured, the cost of electric power supply might be increased in accordance with the so-called "green" tariff. Improving the legal framework and state regulation of bioenergy tariffs can reduce the payback period of the plants to 5–7 years, which makes them attractive for further implementation. An additional incentive may be the grant projects for financing or supply of individual structural elements of equipment for the biogas production technological processes.

Methane fermentation – an alternative way to control pathogens

Manure is a potentially dangerous source of environmental pollution, as it contains heavy metals, weed seeds, helminth eggs and pathogenic microflora. Through emission, greenhouse gases – nitrous oxide and methane – are released into the air. Manure is the most dangerous factor in this process of manure composting is carried out using passive and active methods. Such a liquid is also used to wash off manure (Dubinin et al., 2009). It is safer to use manure as a fertilizer after composting. The technological process of manure composting is carried out using passive and active methods. With passive (traditional) composting, biological disinfection of manure occurs under natural conditions in heaps. Composting is a biological process of mineralisation and humification of organic substances that occurs in aerobic conditions under the influence of microorganisms, mainly thermophilic ones. During composting, organic waste is heated to a temperature of 60 °C, which adversely affects the larvae and pupae of flies, helminth eggs and pathogens (Wu et al., 2017; Wang et al., 2018; Izhboldina et al., 2019; Borodai et al., 2020). The composting process is exothermic; it does not depend on the type of substrate and its volume. The temperature regime is maintained by means of forced ventilation and regulation of the substrate humidity. Machines and compost mixers and aerators are used for this purpose (Izhboldina et al., 2019; Kobets et al., 2020). The advantages of passive composting include a wide range of humidity (60–92%) of the initial manure (using moisture-absorbing materials), low qualification requirements for workers, simplicity of composting site construction, relatively modest capital investments, the absence of unpleasant odours in the compost and a decrease in the number of harmful microorganisms and fungi. The disadvantages are the uneven maturation of the compost, the dependence of the composting process on weather conditions and the increased risk of leakage (Cáceres et al., 2016; Borodai et al., 2020; Skliari, 2021).

One of the methods of processing and disinfecting organic waste is also the use of synanthropic fly larvae. Through the assimilation process, these organisms are able to convert organic waste into their biomass. Among scientists, the domestic fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) are of particular interest. Together with valuable organic fertilizers, when cultivating these larvae, secondary products are obtained, in particular biodiesel, biologically active substances, as well as protein for animal feed. Using this waste treatment method, the microbial load of some pathogens is reduced (Čičková et al., 2015; Rachakoot, 2020; Parry et al., 2021). However, scientists believe that more research is needed on fly species to ensure processing of different types of organic waste (meat processing waste or a mixture of manure waste and meat processing waste, slaughterhouse waste, etc.). Parry et al. (2021) also point to a distinct area of research on fly species associated with pathogen inactivation. Thus, Lucilia sericata is able to produce antifungal compounds that promote wound healing. At the same time, it responds well to laboratory conditions of cultivation.

Another method of disinfecting organic waste is vermiculture (growing earthworms), since earthworms are able to break down organic waste (Ganguly & Chakraborty, 2020). Edwards & Arancon (2022) provide a list of the most common species used in waste processing: Eisenia fetida, E. andrei, E. eugeniae, Lumbricus rubellus, Dendrobaena veneta, Perionyx excavatus, P. hawayana and Lumigo mauritus. Such processing produces biohumus, as well as valuable protein that can be used as feed for livestock and fish (Edwards & Arancon, 2022; Hajarn, et al., 2023). During the process of vermicomposting, plant pathogens are inactivated, as well as pests and nematodes, which are plant parasites. At the same time, Edwards & Arancon (2022) are referencing the studies on the destruction of human pathogens by vermicomposting. Manikanta et al. (2023), note that the processing of organic fertilizers using worms is odorless because they have a capability to create cooloionic fluids that are present in manure in a form suitable for absorption by plants. In order to achieve these requirements, the processing of manure by methane digestion is the most fully compliant.
antibacterial. At the same time, vermicomposting products act as biological pesticides.

Myocutivation is also one of the processes of recycling and disinfection of organic waste. Fungi destroy lignocellulosic substrates by producing lignocellulosic enzymes (Kumla et al., 2020). The processed substrate from fungi can improve the health of plants by inhibiting the plant pathogenic microorganisms in the soil and the sugar beet nematodes *Heterodera schachtii* (Grimm et al., 2020).

Therefore, the analysis of previous scientific research shows that the most common biological methods of organic waste disinfection is the use of living organisms in their processing. For this purpose, anaerobic microorganisms, aerobic microorganisms, annelid worms, fungi, fly larvae, and microalgae are most often used (Fig. 4).

Mycocutivation is also one of the processes of recycling and disinfection of organic waste. Fungi destroy lignocellulosic substrates by producing lignocellulosic enzymes (Kumla et al., 2020). The processed substrate from fungi can improve the health of plants by inhibiting the plant pathogenic microorganisms in the soil and the sugar beet nematodes *Heterodera schachtii* (Grimm et al., 2020).

Therefore, the analysis of previous scientific research shows that the most common biological methods of organic waste disinfection is the use of living organisms in their processing. For this purpose, anaerobic microorganisms, aerobic microorganisms, annelid worms, fungi, fly larvae, and microalgae are most often used (Fig. 4).

These organisms are capable of forming heat-resistant spores. The authors conducted an experiment on the effect of temperature and sanitation treatment duration on the destruction of *Clostridium* spp. spores. The spores of these pathogens survived at 70 °C for at least ten hours. And only temperatures above 121 °C and prolonged exposure at atmospheric pressure slowed the growth of *C. perfringens* and *C. sporogenes* spores (Lüdecke et al., 2020). The threat to the environment and humans of untreated digestate as a byproduct of biogas production is discussed by Chojnacka & Moustakas (2024). Therefore, safe use of the digestate for various purposes is only possible after further study of technologies and processes (Lamolinara et al., 2022).

Almanza et al. (2023) note the advantages of pathogen inactivation by the anaerobic digestion method with subsequent processing. There is also evidence of benefits of improving anaerobic digestion technologies (to inactivate pathogens) through pre-treatment of organic waste with inorganic or organic substances, as well as the use of various physical methods.

The reduction of pathogens in anaerobic digestion is also influenced by pH, ammonia concentration and biological processes (Pigoli et al., 2021). The high pH, total degradation of solids, and methane yield in the assessment of pathogen inactivation during anaerobic digestion are reported by Yang et al. (2023). According to Subirats et al. (2022), the main factors influencing the inactivation of spore-forming bacteria in anaerobic digestion are also temperature and pH. These microorganisms are commonly present in livestock and human waste that is used as fertilizer for plants. Therefore, pre-treatment of such organic waste through anaerobic digestion before its use in crop production will reduce the number of pathogens in the environment.

Manyi-Loh & Lues (2022) studied the effect of anaerobic digestion of sawdust (25%) and pork manure (75%) at psychrophilic temperature (13.2–24.7 °C) on the reduction of pathogens in waste (*E. coli, Salmonella spp., Yersinia spp., Campylobacter spp., Listeria spp.*). This species deceased depending on the number of days of reactor operation. The least resistant to anaerobic conditions of biocreators is *E. coli* (77 days of viability), and the most resistant is *Listeria monocytogenes* (175 days).

Quite often, mesophilic temperature conditions are used during anaerobic digestion in processing the manure of farm animals. At the same time, the main problem is the inactivation of pathogens in such wastes. The experiment with the preliminary thermophilic and hypertemophilic hydrolysis showed a decrease in the number of cultured *E. coli* bacteria to 6.9 log₁₀, as well as a decrease in the number of *Enterococcus* spp.,

Fig. 4. The most common biological methods of organic waste disinfection

- Anaerobic digestion: application of bioreactors with anaerobes to obtain environmentally safe, disinfected organic waste and biogas
- Solid fraction composting: use of aerobic microflora to obtain environmentally safe, disinfected organic waste
- Aeriation tanks to process liquid fraction: use of aerobic microflora to obtain environmentally safe, disinfected organic waste
- Cultivation of microalgae: use of photo bio-reactor to recycle solid organic waste in anaerobic conditions, when biogas, lipids, carbohydrates and proteins are produced, with the benefits of producing bioplastic and removal of organic pollutants from waste water
- Vermiculture: cultivation of earthworms to obtain environmentally safe compost - vermi compost (odour-free due to antibacterial coelomic fluids), biopesticides and protein, as well as land reclamation
- Myocutivation: cultivation of fungi to produce lignocellulosic enzymes and obtain the substrate for improved growth of plants and inhibit pathogenic microorganisms and plant nematodes
- Cultivation of fly - saprotophous larvae: cultivation of synanthropic fly larvae to obtain environmentally safe, disinfected organic waste, protein for animal feed and lipids to produce biodiesel

Biosyst. Divers. 2024, 32(2)
Streptococcus spp. and Acinetobacter spp. Despite this, Clostridium spp. (sensu stricto) showed high relative abundance (Lin et al., 2022a).

The effect of high temperatures on the inactivation of pathogens is also confirmed by the experiments of Seruga et al. (2020). They studied the survival time and inactivation rate of Salmonella Senftenberg W775, Enterococcus spp. pathogens and Ascaris suum eggs under thermophilic anaerobic conditions. On a laboratory scale, elimination of pathogens was recorded for 6.1 hours for Salmonella Senftenberg W775, 5.5 hours for Enterococcus spp. and about 10 hours for the eggs of A. suum.

The effect of temperature on the efficiency of pathogen inactivation during anaerobic digestion is noted by Liu et al. (2021): thermophilic digestion removes pathogens more effectively than mesophilic. According to Cai et al. (2022), who studied the specific methane yield, process parameters and microbial characteristics in anaerobic digestion of conventional agricultural waste (human faeces, food waste and lawn grass), co-digestion reduces the absolute concentration of Salmonella spp.

Based on the analysis of previous sources, the limiting factors affecting the viability of pathogens in waste processing are temperature, pH and oxygen concentration in the environment (Fig. 5, Table 1).

![Figure 5](image.png)

Table 1
The main factors affecting the destruction of pathogens during waste processing and publication activity in the field of research (according to the Scopus database)

<table>
<thead>
<tr>
<th>Presence of oxygen</th>
<th>Environment</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>psychrophilic conditions: 6</td>
<td>psychrophilic conditions: 3</td>
<td>psychrophilic conditions: 2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>mesophilic conditions: 53</td>
<td>mesophilic conditions: 26</td>
<td>mesophilic conditions: 4</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>thermophilic conditions: 54</td>
<td>thermophilic conditions: 29</td>
<td>thermophilic conditions: 0</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>58</td>
<td>6</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Anaerobic conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>psychrophilic conditions: 4</td>
<td>psychrophilic conditions: 6</td>
<td>psychrophilic conditions: 1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>mesophilic conditions: 171</td>
<td>mesophilic conditions: 66</td>
<td>mesophilic conditions: 8</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>thermophilic conditions: 124</td>
<td>thermophilic conditions: 41</td>
<td>thermophilic conditions: 3</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td>113</td>
<td>12</td>
<td>424</td>
<td></td>
</tr>
</tbody>
</table>

The total number of articles searched based on keywords in the Scopus database for the period 2000–2023: 412, 171, 18, 601.

Najdenski et al. (2021) investigated the anaerobic digestion of wheat straw in a bioreactor with an organic load of 2, 5, 7, 10 and 20 g/L, as well as with an exposure time of 18–80 days. Microorganisms of Bacillus, Pseudomonas, Enterococcus and Aeromonas genera, as well as the species Terrabacillus halophilus, have been identified.

Anaerobic digestion is widely used for wastewater treatment. The problem of disinfection quality also exists. An inevitable byproduct of wastewater is sludge, which contains human and animal faeces, so controlling pathogens in public sanitation facilities is of great importance. Arcobacter spp. (up to 86.0%) is recorded in bacterial groups of untreated wastewater, according to Cuitero-Martínez et al. (2023). This genus of bacteria contains potentially pathogenic species. According to the same researchers, the DNA of some species can persist after treatment (Acinetobacter johnsonii, A. junii, Aeromonas caviae, A. hydrophila, A. veronii, Arcobacter butzleri, A. cryaerophilus, Chryseobacterium indologenes, Hafnia parva, Moraxella spp. and Vibrio cholerae). This is important to know when...
reusing water. According to studies by Zuo et al. (2021), the main pathogen of *Pseudomonas aeruginosa* continues to reproduce for the first 8 days, and then its population stabilizes at a higher level than at the beginning. Enteroviruses, *Salmonella* and *Escherichia coli* are also present in the sludge. Therefore, wastewater is the main source of high-risk biological pollutants: pathogenic bacteria, viruses, parasitic protozoa, antibiotic-resistant bacteria, and antibiotic resistance genes. The sludge is treated using various technologies. Composting, anaerobic digestion, aerobic digestion, microwave irradiation, membrane bioreactor, membrane filter, coagulation, nanofiltration, air desorption, adsorption, and photocatalysis prior to anaerobic digestion (Anjum et al., 2023).

López et al. (2020) analysed the operation of three plants: an anaerobic digestion plant with mesophilic (35–37 °C) conditions, anaerobic digestion plant with thermophilic (55–57 °C) conditions and thermophilic aerobic plant (55–57 °C). The best indicators for reducing the quantity of *Enterococcus* sp. were obtained during the operation of an anaerobic plant with thermophilic conditions, *E. coli* – during the operation of aerobic thermophilic plant. The studies above indicate a high temperature value during wastewater sludge treatment.

Comparing these two purification methods (under anaerobic and aerobic conditions), Carraturo et al. (2022) investigated the recovery of the growth of *Salmonella typhimurium* and *E. coli* artificially inoculated on mature digestate to assess its effectiveness as a growth medium for microorganisms. For 24–48 hours under anaerobic conditions, these microorganisms were not detected, unlike in aerobic conditions. High concentrations of *S. typhimurium* and *E. coli* bacteria in the second case were observed for 10 days. Negative results were also obtained in the study of mature digestate for the presence of *Salmonella* spp., which is found in wastewater sludge fed to a full-scale plant.

Thermophilic anaerobic digestion combined with pretreatment may be useful for further optimization of animal waste disposal (Tang et al., 2020). A positive result of anaerobic digestion in combination with pretreatment for most pathogenic bacteria is described by Yang et al. (2022). The exception was *Clostridium perfringens*. Slompo et al. (2020) observed log10 removal inactivation levels: 0.5 log10 for total coliforms and 2.73 log10 for *E. coli* in their study of anaerobically treated black water processed in photobioreactors inoculated with *Chlorella sorokiniana*. Today, thermal hydrolysis after anaerobic digestion is of great interest. Despite the sterile biological substances obtained from this treatment, recontamination with pathogens is possible (Svirnevich et al., 2020). Good results can be obtained by storing solid biological substances obtained by anaerobic digestion and in the process of thermal hydrolysis before anaerobic digestion for 3 days after re-contamination. If it concerns solid biological substances obtained after anaerobic digestion followed by thermal hydrolysis – more than 13 days. Large volumes of wastewater are produced by aquaculture processing enterprises. The use of a segmented anaerobic reactor followed by an anaerobic filter in the treatment of wastewater generated during fish processing shows a high degree of coliform removal (Souza et al., 2022).

Conclusion

Focus on green energy, decarbonization and greening of production in the context of global warming were a priority for the national economy until recently. The full-scale invasion has made adjustments to Ukraine’s energy security strategies. The difficult situation in the fossil resources market and the worsening environmental circumstances require a comprehensive approach to solving the problem. It is quite clear that the growing epidemiological and epizootic threat from agricultural enterprises, in the conditions of infrastructure disrupted by hostilities, cannot be addressed solely through biogas energy. Methods of preliminary treatment of organic waste as substrates for biogas plants need to be developed and improved, as well as the temperature conditions of the plants themselves, taking into account the peculiarities of the life activities of pathogens. Methods for monitoring the effectiveness of disinfection of organic waste in terms of individual pathogens of infectious and invasive diseases with the further development of biogas technologies also require further study.

We are thankful to the Czech government support provided by the Ministry of Foreign Affairs of the Czech Republic, which allowed this scientific cooperation to start within the project “Empowering the Future of AgriSciences in Ukraine: AgriSC-UA” Yelizaveta Chernysh acknowledges the funding support through the MSCA4 Ukraine project, which is funded by the European Union. Oleksandra Boyko thanks the Ministry of Education and Science of Ukraine for financial support.

References

moval of nutrients and pathogenic organisms in fish processing effluents. Arqui-
Subirats, J., Sharpe, H., & Topp, E. (2022). Fate of clostridia and other spore-forming
firmicute bacteria during foodstock anaerobic digestion and aerobic composting.
Journal of Environmental Management, 309, 114643.
Svennevik, O. K., Jonassen, K. R., Svenson, K., Hagen, L. H., Westereng, B., Sol-
hydrolyzed biosolids from pathogenic bacterial growth by addition of compost.
Waste and Biomass Valorization, 12(8), 4263–4275.
Tang, B., Li, G., He, M., Liu, J., Ji, J., Wu, K., Zhao, X., Wang, C., Yin, F., Lin, W.,
& Zhang, W. (2020). Effects of pretreatments on anaerobic digestion perfor-
mances in batch reactor for pig mortality and microbial consortia management.
Biomass and Bioenergy, 140, 105652.
Vyas, S., Prajaputi, P., Shah, A. V., Kumar Srivastava, V., & Varjani, S. (2022). Oppor-
tunities and knowledge gaps in biochemical interventions for mining of resour-
ces from solid waste: A special focus on anaerobic digestion. Fuel, 311, 122625.
Wang, Q., Awadhi, M. K., Zhao, J., Ren, X., Wang, M., Li, R., Wang, Z., & Zhang,
of dissolved organic matter in composted pig manure. Journal of Cleaner
Production, 197(1), 472–478.
Identifying the key factors that affect the formation of humic substance during
different materials composting. Bioresource Technology, 244(1), 1193–1196.
human pathogenic bacteria, fungi, protozoa, and viruses in full-scale sludge tre-
mament plants. Journal of Cleaner Production, 380, 134990.
Yang, W., Cai, C., Yang, D., & Dai, X. (2023). Implications for assessing sludge hy-
genization: Differential responses of the bacterial community, human pathoge-
nic bacteria, and fecal indicator bacteria to sludge pretreatment-anaerobic diges-
Yatsiv, S. (2021). State and prospects of poultry development in agricultural enterpri-
Yin, J., & Zhang, X. (2020). Technologies for hHRPs and risk control. In: Ren, H., &
Zamlynskiy, V. (2019). Structural transformations of the stockbreeding industry in
toilet generated blackwater by anaerobic digestion: From energy recovery to sa-
nitation. Sustainability, 13(8), 4000.