Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands

Keywords: species response; temperature; niche; tolerance; reclamation; gradient; temporal dynamic.


The research was carried out at the Research Centre of the Dnipro State Agrarian and Economic University in Pokrov city. Sampling was carried out in 2013–2015 on a variant of artificial soil (technosols) formed on loess-like loam, red-brown clay, green-grey clay, technological mixture of rocks, and also formed on loess-like loam with a humus-rich 70 cm top soil layer. To investigate the spatiotemporal variation in the abundance, species richness and species composition of invertebrate assemblages within the experimental polygon, the animals were sampled using pitfall traps. In total, 60 pitfall traps were operated simultaneously during each sampling period. Each year the pitfalls were emptied 26 times every 7–9 days. Invertebrates (Arthropoda and Mollusca) of 6 classes, 13 orders, 50 families and 202 species or parataxonomic units were recorded. Diplopoda was most abundant taxonomic group, though it was represented by only one species Rossiulus kessleri (Lohmander, 1927). Coleoptera and Araneae were the most numerous taxonomic groups. Readily available water for plants, precipitation, wind speed, atmospheric temperature (daily minimum, daily maximum, daily mean), atmospheric humidity and atmospheric pressure were used as environmental predictors. Two dimension geographic coordinates of the sampling locations were used to generate a set of orthogonal eigenvector-based spatial variables. Time series of sampling dates were used to generate a set of orthogonal eigenvector-based temporal variables. The moisture content in the technosols was revealed to be the most important factor determining the temporal dynamics of the terrestrial invertebrate community in conditions of semi-arid climate and the ecosystem which formed as a result of the reclamation process. Following soil moisture, the factor most strongly affecting invertebrates in the technosols was temperature. From the total set of the invertebrates, two relatively homogeneous species groups in terms of thermal preferences were extracted: the microtemperature and mesotemperature groups. The microtemperature species are more tolerant to the thermal factor, and the mesotemperature species are more sensitive. The Huisman-Olff-Fresco approach expanded by Jansen-Oksanen provides a wide set of ecologically relevant models which are able to explain species response. The species response to temperature is affected by a complex of other environmental, temporal and spatial factors. The effect of other factors on the species response must be previously extracted to find real estimations of the species temperature optima and tolerance. The approaches to solving this problem may be the object of future investigation.


Allen, C. R., Angeler, D. G., Garmestani, A. S., Gunderson, L. H., & Holling, C. S. (2014). Panarchy: Theory and application. Ecosystems, 17(4), 578–589.

Austin, M. P. (1976). On non-linear species response models in ordination. Vegetatio, 33(1), 33–41.

Austin, M. P. (1999). A silent clash of paradigms: Some inconsistencies in community ecology. Oikos, 86(1), 170–178.

Austin, M. P. (2013). Vegetation and environment: Discontinuities and continuities. In: van der Maarel, E., & Franklin, J. (Ed.). Vegetation ecology. Second Edition. John Wiley & Sons, Ltd. Pp. 52–84.

Baho, D. L., Futter, M. N., Johnson, R. K., & Angeler, D. G. (2015). Assessing temporal scales and patterns in time series: Comparing methods based on redundancy analysis. Ecological Complexity, 22, 162–168.

Beck, J., & Kitching, I. J. (2007). Correlates of range size and dispersal ability: A comparative analysis of sphingid moths from the Indo-Austalian tropics. Global Ecology and Biogeography, 16, 341–349.

Bonsall, M. B., & Hastings, A. (2004). Demographic and environmental stochasticity in predator – prey metapopulation dynamics. Journal of Animal Ecology, 73, 1043–1055.

Bonte, D., Baert, L., & Maelfait, J.-P. (2002). Spider assemblage structure and stability in a heterogenous coastal dune system (Belgium). Journal of Arachnology, 30, 331–343.

Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68.

Borcard, D., Legendre, P., Avois–Jacquet, C., & Tuosimoto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832.

Brandle, M., Durka, W., Krug, H., & Brandl, R. (2003). The assembly of local communities: Plants and birds in non-reclaimed mining sites. Ecography, 26, 652–660.

Brandle, M., Ohlschlager, S., & Brandl, R. (2002). Range size in butterflies: Correlation across scales. Evolutionary Ecology Research, 4, 993–1004.

Brown, J. H. (1999). Macroecology: Progress and prospect. Oikos, 87, 3–14.

Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 240–248.

Buchholz, S. (2009). Community structure of spiders in coastal habitats of a Mediterranean delta region (Nestos Delta, NE Greece). Animal Biodiversity and Conservation, 32(2), 101–115.

Buchori, D., Rizali, A., Rahayu, G. A., & Mansur, I. (2018). Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas, 19, 1696–1702.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical information-theoretic approach. Springer, Berlin.

Buzuk, G. N. (2017). Phytoindication with ecological scales and regression analysis: Environmental index. Bulletin of Pharmacy, 76, 31–37.

Colwell, R. K., & Futuyma, D. J. (1971). Measurement of niche breadth and overlap. Ecology, 52, 567–576.

David, J. F., & Handa, I. T. (2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews, 85(4), 881–895.

Desender, K., Ervinck, A., & Tack, G. (1999). Beetle diversity and historical ecology of woodlands in Flanders. Belgian Journal of Zoology, 129(1), 139–155.

Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., & Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47, 15–25.

Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.

Dray, S., Legendre, P., & Peres-Neto, P. (2006). Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecological Modelling, 196, 483–493.

Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J., & Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257–275.

Elton, C. (1927). Animal Ecology. Sidgwick and Jackson, London.

Forrest, J., & Miller-Rushing, A. J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3101–3112.

Foster, R. G., & Kreitzman, L. (2009). Seasons of life: The biological rhythms that enable living things to thrive and survive. Yale University Press, New Haven.

Gallé, R., Vesztergom, N., & Somogyi, T. (2011). Environmental conditions affecting spiders in grasslands at the lower reach of the River Tisza in Hungary. Entomologica Fennica, 22, 29–38.

Ge, B., Daizhen, Z., Jun, C., Huabin, Z., Chunlin, Z., & Boping, T. (2014). Biodiversity variations of soil macrofauna communitiesin forestsina reclaimed coastwith different diked history. Pakistan Journal of Zoology, 46(4), 1053–1059.

Gerlach, J., Samways, M., & Pryke, J. (2013). Terrestrial invertebrates as bioindicators: An overview of available taxonomic groups. Journal of Insect Conservation, 17(4), 831–850.

Gregory, R. D., & Gaston, K. J. (2000). Explanations of commonness and rarity in British breeding birds: Separating resource use and resource availability. Oikos, 88, 515–526.

Grinnell, J. (1917). The niche relationship of the California Thrasher. The Auk, 34(4), 427–433.

Hendrychova, M. (2008). Reclamation success in post-mining landscapes in the Czech Republic: A review of pedological and biological studies. Journal of Landscape Studies, 1, 63–78.

Hendrychova, M., Salek, M., Tajovsky, K., & Reho, M. (2011). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restoration Ecology, 20(5), 561–567.

Hering, R., Hauptfleisch, M., Geißler, K., Marquart, A., Schoenen, M., & Blaum, N. (2019). Shrub encroachment is not always land degradation: Insights from ground-dwelling beetle species niches along a shrub cover gradient in a semi-arid Namibian savanna. Land Degradation and Devilopment, 30(1), 14–24.

Hildmann, E., & Wunsche, M. (1996). Lignite mining and its after-effects on the central German landscape. Water, Air and Soil Pollution, 91, 79–87.

Hodecek, J., Kuras, T., Sipos, J., & Dolny, A. (2016). Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecological Engineering, 94, 537–544.

Hodecek, J., Kuras, T., Sipos, J., & Dolny, A. (2015). Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640.

Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4(1), 37–46.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology, 22, 415–427.

Jamil, T., & ter Braak, C. J. F. (2013). Generalized linear mixed models can detect unimodal species-environment relationships. PeerJ, 1, e95.

Jansen, F., & Oksanen, J. (2013). How to model species responses along ecological gradients – Huisman – Olff – Fresco models revisited. Journal of Vegetation Science, 24, 1108–1117.

Karunaratne, S., Singh, B., Robinson, L., Campbell, C., Yao, H., & Powell, J. (2015). Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6(1), 1–10.

Klimkina, I., Kharytonov, M., & Zhukov, O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74(2), 82–93.

Knapp, M., Seidl, M., Knappová, J., Macek, M., & Saska, P. (2019). Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports, 9(1), 8967.

Konstantinov, A. S., Korotyaev, B. A., & Volkovitsh, M. G. (2009). Insect biodiversity in the Palearctic region. In: Foottit, R., & Adler, P. (Eds.). Insect biodiversity: Science and society. Blackwell Publisher, Chinchester. Pp. 107–162.

Kunah, O. M., Zelenko, Y. V., Fedushko, M. P., Babchenko, A. V., Sirovatko, V. O., & Zhukov, O. V. (2019). The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27(2), 156–162.

Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Zadorozhnaya, G. A., & Kramarenko, A. S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28(3), 91–99.

La Notte, A., D’Amato, D., Mäkinen, H., Paracchini, M. L., Liquete, C., Egoh, B., Geneletti, D., & Crossman, N. D. (2017). Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecological Indicators, 74, 392–402.

Laporta, G. Z., & Sallum, M. A. M. (2014). Coexistence mechanisms at multiple scales in mosquito assemblages. BMC Ecology, 14(1), 30.

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W., & Dhillion, S. (1997). Soil function in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Science, 33, 159–193.

Lawton, J. H. (1999). Are there general laws in ecology? Oikos, 84, 177–192.

Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species. Oecologia, 129(2), 271–280.

Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.

Liu, J.-L., Li, F.-R., Sun, T.-S., Ma, L.-F., Liu, L.-L., & Yang, K. (2016). Interactive effects of vegetation and soil determine the composition and diversity of Carabid and Tenebrionid functional groups in an arid ecosystem. Journal of Arid Environments, 128, 80–90.

Mallis, R. E., & Hurd, L. E. (2005). Diversity among ground dwelling spider assemblages: Habitat generalists and specialists. Journal of Arachnology, 33, 101–109.

Marc, P., Canard, A., & Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment, 74, 229–273.

Michaelis, J., & Diekmann, M. R. (2017). Biased niches – Species response curves and niche attributes from Huisman – Olff – Fresco models change with differing species prevalence and frequency. PLoS One, 12(8), e0183152.

Nash, K. L., Allen, C. R., Angeler, D. G., Barichievy, C., Eason, T., Garmestani, A. S., Graham, N. A. J., Granholm, D., Knutson, M., Nelson, R. J., Nystrom, M., Stow, C. A., & Sundstrom, S. M. (2014). Discontinuities, cross-scale patterns, and the organization of ecosystems. Ecology, 95, 654–667.

Oksanen, J. (2004). Multivariate analysis in ecology. Lecture Notes. Department of Biology, Universityof Oulu.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2018). Community Ecology Package. R package version 2.5-2.

Pakhomov, O., Kulbachko, Y., Didur, O., & Loza, I. (2008). Mining dump rehabilitation: The potential role of bigeminate-legged millipeds (Diplopoda) and artificial mixed-soil habitats. In: Apostol, I., Barry, D. L., Coldewey, W. G., & Reimer, D. W. G. (Eds.). Optimisation of disaster forecasting and prevention measures in the context of human and social dynamics. NATO science for peace and security series E-human and societal dynamics. Chisinau, Moldova, 52, 163–171.

Paoletti, M. G., & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): Their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems and Environment, 74, 157–165.

Paoletti, M. G., Osler, G. H. R., Kinnear, A., Black, D. J., Thomson, L. J., Tsitsilas, A., Sharley, D., Judd, S., Neville, P., & D’inca, A. (2007). Detritivores as indicators of landscape stress and soil degradation. Australian Journal of Experimental Agriculture, 47(4), 412–423.

Pontegnie, M., du Bus de Warnaffe, G., & Lebruna, P. (2005). Impacts of silvicultural practices on the structure of hemi-edaphic macrofauna community. Pedobiologia, 49(3), 199–210.

Rao, C. R. (1995). A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió, 19, 23–63.

Rehor, M., Lang, T., & Eis, M. (2006). Application of new methods in solving current reclamation issues of Severoceske doly, a.s. localities. World of Surface Mining, 6, 383–386.

Rushton, S. P., & Eyre, M. D. (1992). Grassland spider habitats in North-East England. Journal of Biogeography, 19, 99–108.

Schoener, T. W. (1974). The compression hypothesis and temporal resource partitioning. Proceedings of the National Academy of Sciences, 71(10), 4169−4172.

Sklenicka, P., Prikryl, I., Svoboda, I., & Lhota, T. (2004). Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal of the South African Institute of Mining and Metallurgy, 104, 83–88.

Šmilauer, P., & Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge: Cambridge University Press.

Soberon, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123.

Sokolov, S. G., & Zhukov, A. V. (2017). Functional diversity of a parasite assemblages of the Chinese sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae) and habitat structure of the host. Biology Bulletin, 44(3), 331–336.

Souty-Grosset, C., Badenhausser, I., Reynolds, J. D., & Morel, A. (2005). Investigations on the potential of woodlice as bioindicators of grassland habitat quality. European Journal of Soil Biology, 41(3), 109–116.

Szczepanska, J., & Twardowska, I. (1999). Distribution and environmental impact of coal-mining wastes in Upper Silesia Poland. Environmental Geology, 38, 249–258.

Tokeshi, M. (1999). Species coexistence: Ecological and evolutionary perspectives. Blackwell Science, London.

Warburg, M. R., Linsenmair, K. E., & Bercovitz, K. (1984). The effect of climate on the distribution and abundance of isopods. Symposia of the Zoological Society of London, 53, 339–367.

Westhoff, V., & van der Maarel, E. (1978). The Braun-Blanquet approach. In: Whittaker, R. H. (Ed.). Classification of plant communities. Pp. 289–399.

Wise, D. H. (1993). Spiders in ecological webs. Cambridge University Press, Cambridge.

Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in technosols (Nikopol Manganese Ore Basin, Ukraine). Ecologica Montenegrina, 17, 29–45.

Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10.

Zadorozhnaya, G. A., Andrusevych, K. V., & Zhukov, O. V. (2018). Soil heterogeneity after recultivation: Ecological aspect. Folia Oecologica, 45(1), 46–52.

Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301–327.

Zhukov, O., Kunah, O., Dubinina, Y., Zhukova, Y., & Ganga, D. (2019). The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest. Ekológia (Bratislava), 38(3), 353–372.


Most read articles by the same author(s)