Effect of crystalline and amorphic phenol on characteristics of peptidases and glycosidases in chironomid larvae

Keywords: amorphous phenol; chironomid larvae; glycosidases; peptidases; enzyme characteristics.

Abstract

The effects of crystalline and amorphous phenol (0.5 mmol/L) on the characteristics of glycosidases, as well as casein-lytic and hemoglobin-lytic peptidases, which function in the whole body of chironomid larvae Chironomus sp. were studied. Crystalline phenol decreased the activity of glycosidases in comparison to the control in the temperature range 0–50 ºС, amorphous phenol – in the temperature range 0–70 ºС. The temperature optimum of glycosidases in whole body of chironomid larvae in control and experiment corresponds to 50 ºС. The activity of glycosidases in comparison to the control decreased in the pH range 5–11 (to a greater extent in the case of the lower fraction). Amorphous phenol increased the activity of casein-lytic peptidases in comparison to the control in the temperature range of 30–50 ºС, hemoglobin-lytic peptidases – in the temperature range of 0–60 ºС. The degree of the increase of enzyme activity in the temperature optimum zone of casein-lytic and hemoglobin-lytic peptidases was different: the level of enzyme activity in the experiment was higher than in the control by 2.3 and 1.8 times, respectively. The temperature optimum of the studied peptidases of chironomid larvae, regardless of the experimental conditions, corresponds to 40 °C. Crystalline phenol did not actually affect the Q10 values of glycosidases in the temperature range 0–50 °C. Amorphous phenol decreased the Q10 values at a temperature of 40–50 °C. The Q10 values of casein-lytic peptidases increased in most cases, the Q10 values of hemoglobin-lytic peptidases decreased in the presence of amorphous phenol. The process of protein hydrolysis was characterized by a break in the Arrhenius plot at 20 °C. The values of Еact in the range 0–20 °С were lower than in the zone of higher temperatures. The Еact values of the process of casein hydrolysis by peptidases of all tissues of chironomid larvae in the presence of amorphous phenol in both temperature zones increased. The Еact values of the process of hemoglobin hydrolysis by peptidases of all tissues of chironomid larvae in the presence of amorphous phenol in both temperature zones decreased. The Еact values of the process of starch hydrolysis in the presence of crystalline phenol decreased. The amorphous phenol changed the Еact values in different directions. They slightly increased in the presence of the phenol upper fraction, but they decreased in the presence of the phenol lower fraction. The data obtained indicate a significant effect of crystalline and amorphous phenol not only on activity, but also on the characteristics of peptidases and glycosidases that function in the whole body of chironomid larvae.

References

Ali, S. M., Sabac, S. Z., & Fayez, M., Moniband, M., & Hegazi, N. A. (2011). The influence of agro-industrial effluents on River Nile pollution. Journal of Advanced Research, 2, 850–895.


Clayton, G. D., & Clayton, F. E. (1994). Patty’s industrial hygiene and toxicology. John Wiley & Sons Inc., New York.


Dendinger, J. E. (1987). Digestive proteases in the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology, 88B(2), 503–516.


Diaz-Tenorio, L. M., Garcia-Carreňo, F. L., & Navarrete del Toro, Á. M. (2006). Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebrate Biology, 125(2), 125–135.


Dittrich, B. (1990). Temperature dependence of the activities of trypsin-like proteases in decapod crustaceans from different habitats. Naturwissenschaften, 77, 491–492.


Dixon, M., & Webb, E. C. (1964). Enzymes. 2nd ed. Longmans, Green and Co., London.


Elyakova, L. A., & Kozlovskay, E. P. (1975). Proteinases of starfishes-I. Comparative Biochemistry and Physiology, 50B, 249–253.


Flerov, B. A. (1989). Ekologo-fiziologicheskiye aspekty toksikologii presnovodnykh zhivotnykh [Ecological and physiological aspects of toxicology of freshwater animals]. Nauka, Leningrad (in Russian).


Flerova (Nazarova), E. A., & Zabotkina, E. A. (2012). Toksicheskoye deystviye subletal’nykh kontsentratsiy fenola i naftalina na mezonefros serebryanogo karasya [The toxic effect of sublethal concentrations of phenol and naphthalene on mesonefros of silver crucian carp]. Toxicological Herald, 4, 49–51 (in Russian).


Ford, M. D., Delaney, K. A., Ling, L. J., & Erickson, T. (2001). Clinical toxicology. W. B. Saunders Company, Philadelphia.


Gad, N. S., & Saad, A. S. (2008). Effect of environmental pollution by phenol on some physiological parameters of Oreochromis niloticus. Global Veterinaria, 2, 312–319.


Gerasimov, U. V. (ed.). (2015). Rybi Rybinskogo vodokhranilishcha: Populyatsiolnnaya dinamika i ekologiya [Fish of the Rybinsk Reservoir: Population dynamics and ecology]. Filigran, Yaroslavl (in Russian).


Gerking, S. D. (1994). Feeding ecology of fish. Acadtmic Press, San-Diego.


Glass, H. J., & Stark, J. R. (1995). Carbohydrate digestion in the European lobster Homarus gammarus (L.). Journal of Crustacean Biology, 15(3), 424–433.


Goromosova, S. A., & Shapiro, A. Z. (1989). Osnovnyye cherty biokhimii energeticheskogo obmena midiy [The main features of the biochemistry of energy metabolism of mussels]. Nauka, Moscow (in Russian).


Goronovskiy, I. T., Nazarenko, Y. P., & Nekryach, Y. F. (1987). Kratkiy spravochnik po khimii [A concise handbook to chemistry]. Naukova Dumka, Kiev (in Russian).


Hori, T. S. F., Avilez, I. M., Iwama, G. K., Johnson, S. C., Moraes, G., & Afonso, L. O. B. (2008). Impairment of the stress response in matrinxa˜ juveniles (Brycon amazonicus) exposed to low concentrations of phenol. Comparative Biochemistry and Physiology, 147C, 416–423.


Hori, T., Avilez, I. M., Inoue, L. K., & Moraes, G. (2006). Metabolical changes induced by chronic phenol exposure in matrinxa Brycon cephalus (Teleostei: Characidae) juveniles. Comparative Biochemistry and Physiology, 143, 67–72.


Jacob, F., & Monod, J. (1961). On the regulation of gene activity. Cold Spring Harbor Symposium on Quantitative biology. Vol. 26.


Kamler, E., Wolnicki, J., Kamiński, R., & Sikorska, J. (2008). Fatty acid composition, growth and morphological deformities in juvenile cyprinid, Scardinius erythrophthalmus fed formulated diet supplemented with natural food. Aquaculture, 278, 69–76.


Kim, H. R., Meyers, S. P., Pyeun, J. H., & Godber, J. S. (1994). Enzymatic properties of anionic trypsins from the hepatopancreas of crayfish, Procambarus clarkia. Comparative Biochemistry and Physiology, 107B, 197–203.


Koshland, D. E. J. (1970). The molecular basis for enzyme regulation. The enzymes. Structure and Control. New York, London, 342–396.


Koshland, D. E. J., & Neet, K. E. (1968). The catalytic and regulatory properties of enzymes. Annual Review of Biochemistry, 37, 359–410.


Kuz’mina, V. V., Tarleva, A. F., & Gracheva, E. L. (2017). Influence of various concentrations of phenol and its derivatives on the activity of fish intestinal peptidases. Inland Water Biology, 10, 228–234.


Kuz’mina, V. V. (1999). Vliyaniye temperatury na pishchevaritel’nyye gidrolazy bespozvonochnykh zhivotnykh [The effect of temperature on digestive hydrolases of invertebrate animals]. Journal of Evolutionary Biochemistry and Physiology, 35(1), 15–19 (in Russian).


Kuz’mina, V. V., Chornaya, E. Y., Kulivatskaya, E. A., & Sheptitskiy, V. A. (2017b). Vliyaniye fenola na temperaturnyye kharakteristiki peptidaz lichinok khironomid – potentsial’nykh ob’yektov pitaniya ryb-bentofagov [The effect of phenol on the temperature characteristics of peptidases of chironomid larvae – potential food objects for benthophagous fish]. Problems of Biology of Productive Animals, 4, 48–57 (in Russian).


Kuz’mina, V. V., Chornaya, E. Y., Skvortsova, E. G., Kulivatskaya, E. A., & Sheptitskiy, V. A. (2018). Temperature characteristics of peptidases of chironomid larvae, potential fish prey, at various pH values. Biosystems Diversity, 3, 201–205.


Kuz’mina, V. V., Zavedenkova, L. V., & Gracheva, E. L. (2016). Vliyaniye fenola i yego proizvodnykh na aktivnost’ kazeinliticheskikh peptidaz u lichinok khironomid – potentsial’nykh ob’yektov pitaniya ryb [The effect of phenol and its derivatives on the activity of caseinlitic peptidases in chironomid larvae – potential fish food objects]. Problems of Biology of Productive Animals, 4, 37–45 (in Russian).


Luk’yanenko, V. I. (1983). Obshchaya ikhtiotoksikologiya [General ichthyotoxicology]. Light and Food Industry, Moscow (in Russian).


Mai, I. D. (2012). Experimental exposure of African catfish Clarias gariepinus (Burchell, 1822) to phenol: Clinical evaluation, tissue alterations and residue assessment. Journal of Advanced Research, 3, 177–183.


Matey, V. Y. (1970). Vliyaniye subtoksicheskikh kontsentratsiy fenola na uslovnoreflektornuyu deyatel’nost’ guppi [The effect of subtoxic phenol concentrations on guppy conditioned activity]. Hydrobiological Journal, 6(3), 100–103.


Maystrenko, V. N., & Klyuyev, H. A. (2004). Ekologo-analiticheskiy monitoring stoykikh organicheskikh zagryazniteley [Ecological and analytical monitoring of persistent organic pollutants]. BINOM, Moscow (in Russian).


Michałowicz, J., & Duda, W. (2007). Phenols – sources and toxicity. Polish Journal of Environmental Studies, 16(3), 347–362.


Mikryakov, V. R., Balabanova, P. V., Zabotkina, E. A., Lapirova, T. B., Popov, A. V., & Silkina, N. I. (2001). The reaction of the immune system of fish to water pollution with toxicants and acidification of the environment. Nauka, Moscow.


Navarrete del Toro, M. A., García-Carreño, F. L., Díaz, L. M., Celis-Guerrero, L., & Saborowski, R. (2006). Aspartic proteinases in the digestive tract of marine decapod crustaceans. Journal of Experimental Zoology, 305A, 645–654.


Orlov, D. S., Sadovnikova, L. K., & Lozanovskaya, I. N. (2002). Ekologiya i zashchita biosfery pri khimicheskom zagryaznenii [Ecology and protection of the biosphere in chemical contamination]. Higher School, Moscow (in Russian).


Pinder, L. C. V. (1986). Biology of freshwater Chironomidae. Annual Review of Entomology, 31, 1–23.


Sakharov, I. Y., Litvin, F. E., Mitkevitch, O. V., Samokhin, G. P., & Bespalova, Z. D. (1994). Substrate specificity of collagenolytic proteases from the king crab Paralithodes camtschatica. Comparative Biochemistry and Physiology, 107B(3), 411–417.


Singh, A. K., & Chandra, R. (2019). Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquatic Toxicoljgy, 211, 202–216.


Taysse, L., Troutaud, D., Khan, N. A., & Deschaux, P. (1995). Structure-activity relationship of phenolic compounds (phenol, pyrocatechol and hydroquinone) on natural lymphocytotoxicity of carp (Cyprinus carpio). Toxicology, 98, 207–214.


Ugolev, A. M., & Jesuitova, N. N. (1969). Determination of the activity of invertase and other disaccharidases. In: Study of the digestive apparatus in humans. Overview of modern methods. Nauka, Leningrad. Pp. 169–173 (in Russian).


Ugolev, A. M., & Kuz’mina V. V. (1993). Pishchevaritel’nyye protsessy i adaptatsii u ryb [Digestive processes and adaptations in fish]. Gidrometeoizdat, Saint Petersburg (in Russian).


Van Wormhoudt, A., Sellos, D., Donval, A., Plaire-Goux, S., & Le Moullac, G. (1995). Chymotrypsin gene expression during the intermolt cycle in the shrimp Penaeus vannamei (Crustacea; Decapoda). Experientia, 51(2), 159–163.


Wardiatno, Y., & Krisanti, M.. (2013). The vertical dynamics of larval chironomids on artificial substrates in Lake Lido (Bogor, Indonesia). Tropical Life Sciences Research, 24(2), 13–29.


Zaprometov, M. N. (1974). Osnovy biokhimii fenol’nykh soyedineniy [Principles of biochemistry of phenolic compounds]. Publishing Graduate School M, Moscow (in Russian).


Zilli, F. L., Montalto, L., Paggi, A., & Merchese, C. (2008). Biometry and life cycle of Chironomus calligraphus Goeldi 1905 (Diptera, Chironomidae) in laboratory conditions. Asociacion Interciencia, 33(10), 767–770.

Published
2020-05-04
Section
Articles

Most read articles by the same author(s)