Applying plant disturbance indicators to reveal the hemeroby of soil macrofauna species

Keywords: diversity; urbanization; bioindication; canonical correspondance analysis; variation fractioning.

Abstract

Hemeroby is an integrated indicator for measuring human impacts on environmental systems. Hemeroby has a complex nature and a variety of mechanisms to affect ecosystems. Hemeroby is often used to assess disturbances in different vegetation types but this concept has seldom been evaluated for animals. The role of the hemeroby gradient in structuring the soil macrofauna community was investigated. The experimental polygon was located in Botanical Garden of the Oles Honchar Dnipro National University (Dnipro City, Ukraine). There were 20 sites within the polygon. On each of them at 105 points samples of soil macrofauna were taken, soil penetration resistance, electrical conductivity of soil, depth of litter, height of grasses were measured. Within each site, a description of the vegetation cover was made. Based on the description of the vegetation, an indication of the level of ecosystem hemeroby within the polygons was conducted. In total, 48,457 invertebrate (Annelida, Arthropoda, and Mollusca) individuals of 6 classes, 13 orders, 50 families and 83 species or parataxonomic units were recorded. Phytoindication reveals that the level of hemeroby within the studied polygons varies from 34.9 to 67.2. The model V and VI from the HOFJO-list were the most optimal model of the species response to hemeroby gradient. The weighted average factor value was used to assess the optimal factor level for the species in a symmetrical bell-shaped response model. The optimal factor level of the hemeroby for the soil macrofauna species ranges from 34.9 to 66.0. Species also differ in degree of specialization to the factor of hemeroby. There was a regular change in the soil macrofauna community size and diversity in the hemeroby gradient. The limiting influence of anthropogenic transformation of the environment on the abundance of soil macrofauna community is clearly marked at the level of hemeroby above average. Species diversity of the community is greatest at moderate hemeroby level. Both relatively little transformed habitats and strongly transformed ones are characterized by lower species richness of the soil macrofauna community. The Shannon index shows a clear upward trend with increasing hemeroby. The Pielou index indicates that the main reason for this trend is an increase in community evenness with increasing hemeroby. The intermediate disturbance hypothesis was fully supported with respect to species richness. For the number of species, there is indeed a certain level of heterogeneity at which the number of species is highest. For another aspect of diversity, evenness, this pattern is not true. The evenness increases with increasing habitat disturbance. This result is due to a decrease in the abundance of dominant species.

References

Acosta, A., Blasi, C., Carranza, M. L., Ricotta, C., & Stanisci, A. (2003). Quantifying ecological mosaic connectivity and hemeroby with a new topoecological index. Phytocoenologia, 33(4), 623–631.


Andreeva, R. V. (1990). Opredelitel’ lichinok slepnej [Identification key to the horsefly larvae e]. Naukova Dumka, Kyiv (in Russian).


Angermeier, P. L. (2000). The natural imperative for biological conservation. Conservation Biology, 14(2), 373–381.


Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., Macgregor-Fors, I., Mcdonnell, M., Mörtberg, U., & Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133330.


Austin, M. (1999). The potential contribution of vegetation ecology to biodiversity research. Ecography, 22, 465–484.


Austin, M. P. (1987). Models for the analysis of species’ response to environmenttal gradients. Vegetatio, 69, 35–45.


Battisti, C., & Fanelli, G. (2016). Applying indicators of disturbance from plant ecology to vertebrates: The hemeroby of bird species. Ecological Indicators, 61, 799–805.


Battisti, C., Poeta, G., & Fanelli, G. (2016). The disturbance regime. In: Environmental Science and Engineering (Subseries: Environmental Science). Springer, Berlin, Heidelberg. Pp. 31–46.


Bettez, N. D., & Groffman, P. M. (2013). Nitrogen deposition in and near an urban ecosystem. Environmental Science and Technology, 47(11), 6047–6051.


Bogyó, D., Magura, T., Simon, E., & Tóthmérész, B. (2015). Millipede (Diplopoda) assemblages alter drastically by urbanisation. Landscape and Urban Planning, 133, 118–126.


Bonato, L., Minelli, A., Lopresti, M., & Cerretti, P. (2014). ChiloKey, an interactive identification tool for the geophilomorph centipedes of Europe (Chilopoda, Geophilomorpha). ZooKeys, 443, 1–9.


Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73(3), 1045–1055.


Borges, P. A. V., Aguiar, C., Amaral, J., Amorim, I. R., André, G., Arraiol, A., Baz, A., Dinis, F., Enghoff, H., Gaspar, C., Ilharco, F., Mahnert, V., Melo, C., Pereira, F., Quartau, J. A., Ribeiro, S. P., Ribes, J., Serrano, A. R. M., Sousa, A. B., & Wunderlich, J. (2005). Ranking protected areas in the Azores using standardised sampling of soil epigean arthropods. Biodiversity and Conservation, 14(9), 2029–2060.


Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.


Bouché, M. B., & Al-Addan, F. (1997). Earthworms, water infiltration and soil stability: Some new assessments. Soil Biology and Biochemistry, 29(3–4), 441–452.


Bray, N., & Wickings, K. (2019). The roles of invertebrates in the urban soil microbiome. Frontiers in Ecology and Evolution, 7, 359.


Brygadyrenko, V. V. (2015). Influence of tree crown density and density of the herbaceous layer on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 23(2), 134–148.


Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 240–248.


Büchi, L., & Vuilleumier, S. (2014). Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. American Naturalist, 183(5), 612–624.


Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer, Berlin.


Butenko, K. O., Gongalsky, K. B., Korobushkin, D. I., Ekschmitt, K., & Zaitsev, A. S. (2017). Forest fires alter the trophic structure of soil nematode communities. Soil Biology and Biochemistry, 109, 107–117.


Buzuk, G. N. (2017). Phytoindication with ecological scales and regression analysis: Environmental index. Bulletin of Pharmacy, 76, 31–37.


Byrne, L. B., Bruns, M. A., & Kim, K. C. (2008). Ecosystem properties of urban land covers at the aboveground-belowground interface. Ecosystems, 11(7), 1065–1077.


Byrne, L., & Bruns, M. (2004). The effects of lawn management on soil microarthropods. Journal of Agricultural and Urban Entomology, 21, 151–156.


Capowiez, Y., Sammartino, S., & Michel, E. (2014). Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia, 57(4–6), 303–309.


Carreiro, M. M., & Tripler, C. E. (2005). Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems, 8(5), 568–582.


Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Qiu, Y., Wu, Q., & Huang, K. (2020). Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications, 11(1), 1–12.


Cherny, N. G., & Golovach, S. J. (1993). Dvuparnonogie mnogonozhki ravninnoj territorii Ukrainy [Millipedes of the plain territory of Ukraine]. Naukova Dumka, Kyiv (in Russian).


Collins, J., Kinzig, A., Grimm, N., Fagan, W. F., Hope, D., Wu, J., & Borer, E. T. (2000). A new urban ecology. American Scientist, 88(5), 416–425.


Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310.


Croci, S., Butet, A., Georges, A., Aguejdad, R., & Clergeau, P. (2008). Small urban woodlands as biodiversity conservation hot-spot: A multi-taxon approach. Landscape Ecology, 23(10), 1171–1186.


Decina, S. M., Ponette-González, A. G., & Rindy, J. E. (2020). Urban tree canopy effects on water quality via inputs to the urban ground surface. In: Levia, D., Carlyle-Moses, D., Iida, S., Michalzik, B., Nanko, K., & Tischer, A. (Eds.). Forest-water interactions. Ecological studies (analysis and synthesis). Springer, Cham. Vol. 240. Pp. 433–457.


Decina, S. M., Templer, P. H., & Hutyra, L. R. (2018). Atmospheric inputs of nitrogen, carbon, and phosphorus across. Earth’s Future, 6(2), 134–148.


Deichsel, R. (2006). Species change in an urban setting-ground and rove beetles (Coleoptera: Carabidae and Staphylinidae) in Berlin. Urban Ecosystems, 9(3), 161–178.


Dennis, R. L. H., Hodgson, J. G., Grenyer, R., Shreeve, T. G., & Roy, D. B. (2004). Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecological Entomology, 29(1), 12–26.


Devictor, V., Julliard, R., & Jiguet, F. (2008). Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, 117(4), 507–514.


Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.


Dorendorf, J., Wilken, A., Eschenbach, A., & Jensen, K. (2015). Urban-induced changes in tree leaf litter accelerate decomposition. Ecological Processes, 4, 1.


Dubinina, Y. Y. (2018). The spatial scaling of impact in edaphic and plant factors on the structuring of the soil macrofauna community. Acta Biologica Sibirica, 4(3), 36.


Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monograph, 67(3), 345–366.


Duh, J.-D., Shandas, V., Chang, H., & George, L. A. (2008). Rates of urbanisation and the resiliency of air and water quality. Science of the Total Environment, 400, 238–256.


Ehlers, W. (1975). Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science, 119(3), 242–249.


Entling, W., Schmidt, M. H., Bacher, S., Brandl, R., & Nentwig, W. (2007). Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Global Ecology and Biogeography, 16(4), 440–448.


Epp Schmidt, D. J., Kotze, D. J., Hornung, E., Setälä, H., Yesilonis, I., Szlavecz, K., Dombos, M., Pouyat, R., Cilliers, S., Tóth, Z., & Yarwood, S. (2019). Metagenomics reveals bacterial and archaeal adaptation to urban land-use: N catabolism, methanogenesis, and nutrient acquisition. Frontiers in Microbiology, 10, 2330.


Epp Schmidt, D. J., Pouyat, R., Szlavecz, K., Setälä, H., Kotze, D. J., Yesilonis, I., Cilliers, S., Hornung, E., Dombos, M., & Yarwood, S. A. (2017). Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology and Evolution, 1, 123.


Fanelli, G., Tescarollo, P., & Testi, A. (2006). Ecological indicators applied to urban and suburban floras. Ecological Indicators, 6(2), 444–457.


Fehrenbach, H., Grahl, B., Giegrich, J., & Busch, M. (2015). Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. International Journal of Life Cycle Assessment, 20(11), 1511–1527.


Fernández, C., Acosta, F. J., Abellá, G., López, F., & Díaz, M. (2002). Complex edge effect fields as additive processes in patches of ecological systems. Ecological Modelling, 149(3), 273–283.


Gan, H., & Wickings, K. (2017). Soil ecological responses to pest management in golf turf vary with management intensity, pesticide identity, and application program. Agriculture, Ecosystems and Environment, 246, 66–77.


Geri, F., Amici, V., & Rocchini, D. (2010). Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370–379.


Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M., Joschko, M., & Timmer, J. (2016). Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59(1–2), 27–36.


Gilyarov, M. S. (1964). Opredelitel’ obitayushhikh v pochve lichinok nasekomykh [Identification key of soil-inhabiting insect larvae]. Nauka, Moscow (in Russian).


Godefroid, S., & Koedam, N. (2007). Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecology, 22(8), 1227–1239.


Goncharenko, I. V. (2017). Fitoindykaciya antropogennogo navantazhennya [Phytoindication of anthropogenic factor]. Serednyak T. K., Dnipro (in Ukranian).


Gray, J. S. (1989). Effects of environmental stress on species rich assemblages. Biological Journal of the Linnean Society, 37, 19–32.


Griffiths, B., Faber, J., & Bloem, J. (2018). Applying soil health indicators to encourage sustainable soil use: The transition from scientific study to practical application. Sustainability, 10(9), 3021.


Groffman, P. M., Avolio, M., Cavender-Bares, J., Bettez, N. D., Grove, J. M., Hall, S. J., Hobbie, S. E., Larson, K. L., Lerman, S. B., Locke, D. H., Heffernan, J. B., Morse, J. L., Neill, C., Nelson, K. C., O’Neil-Dunne, J., Pataki, D. E., Polsky, C., Chowdhury, R. R., & Trammell, T. L. E. (2017). Ecological homogenization of residential macrosystems. Nature Ecology and Evolution, 1(7), 1–3.


Groffman, P. M., Cavender-Bares, J., Bettez, N. D., Grove, J. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K., O’Neil-Dunne, J., Ogden, L., Pataki, D. E., Polsky, C., Chowdhury, R. R., & Steele, M. K. (2014). Ecological homogenization of urban USA. Frontiers in Ecology and the Environment, 12(1), 74–81.


Gural-Sverlova, N. V., & Gural, R. I. (2012). Vyznachnyk nazemnykh molyuskiv Ukrayiny [Identification book of the terrestrial molluscs of Ukraine]. State Museum of Natural History, Lviv (in Ukranian).


Hall, S. J., Learned, J., Ruddell, B., Larson, K. L., Cavender-Bares, J., Bettez, N., Groffman, P. M., Grove, J. M., Heffernan, J. B., Hobbie, S. E., Morse, J. L., Neill, C., Nelson, K. C., O’Neil-Dunne, J. P. M., Ogden, L., Pataki, D. E., Pearse, W. D., Polsky, C., Chowdhury, R. R., & Trammell, T. L. E. (2016). Convergence of microclimate in residential landscapes across diverse cities in the United States. Landscape Ecology, 31(1), 101–117.


Heegaard, E. (2002). A model for alpine species distribution in relation to snowmelt time and altitude. Journal of Vegetation Science, 13(4), 493–504.


Hill, M. O., Roy, D. B., & Thompson, K. (2002). Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. Journal of Applied Ecology, 39(5), 708–720.


Hill, T. C. J., Walsh, K. A., Harris, J. A., & Moffett, B. F. (2003). Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology, 43(1), 1–11.


Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4(1), 37–46.


Jalas, J. (1955). Hemerobe und Hemerochore Pflanzenarten. Ein Terminologischer Reformversuch. Acta Societas Flora Fauna Fennica, 72, 1–15.


Jansen, F., & Oksanen, J. (2013). How to model species responses along ecological gradients – Huisman-Olff-Fresco models revisited. Journal of Vegetation Science, 24(6), 1108–1117.


Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8(1), 1–14.


Joimel, S., Cortet, J., Jolivet, C. C., Saby, N. P. A., Chenot, E. D., Branchu, P., Consalès, J. N., Lefort, C., Morel, J. L., & Schwartz, C. (2016). Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Science of the Total Environment, 545–546, 40–47.


Joimel, S., Schwartz, C., Hedde, M., Kiyota, S., Krogh, P. H., Nahmani, J., Pérès, G., Vergnes, A., & Cortet, J. (2017). Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of the Total Environment, 584–585, 614–621.


Jones, E. L., & Leather, S. R. (2012). Invertebrates in urban areas: A review. European Journal of Entomology, 109(4), 463–478.


Jouquet, P., Podwojewski, P., Bottinelli, N., Mathieu, J., Ricoy, M., Orange, D., Tran, T. D., & Valentin, C. (2008). Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena, 74(1), 13–21.


Julliard, R., Clavel, J., Devictor, V., Jiguet, F., & Couvet, D. (2006). Spatial segregation of specialists and generalists in bird communities. Ecology Letters, 9(11), 1237–1244.


Kabakov, O. N. (2006). Plastinchatousye zhuki podsemejstva Scarabaeinae (Coleoptera: Scarabaeidae) fauny Rossii i sopredelnykh stran [Scarab beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae) of Russia and adjacent countries]. KMK, Moscow (in Russian).


Katayama, N., Amano, T., Naoe, S., Yamakita, T., Komatsu, I., Takagawa, S., Sato, N., Ueta, M., & Miyashita, T. (2014). Landscape heterogeneity – biodiversity relationship: Effect of range size. PLoS One, 9(3), e93359.


Knop, E. (2016). Biotic homogenization of three insect groups due to urbanization. Global Change Biology, 22(1), 228–236.


Komaromi, N. A., Nikolenko, N. Y., & Puchkov, A. V. (2019). The faunistic structure of beetles (Insecta: Coleoptera) in herpetobios of urbocenosis of Kharkiv city (Ukraine). Ukrainian Entomological Journal, 15(2), 3–21.


Kowarik, I. (1990). Some responses of flora and vegetation to urbanization in Central Europe. In: Sukopp, H., Hejny, S., & Kowarik, I. (Eds.). Plants and plant communities in the urban environment. SPB Academic Publishing, The Hague. Pp. 45–74.


Kowarik, I. (2020). Herbert Sukopp – an inspiring pioneer in the field of urban ecology. Urban Ecosystems, 23, 1–11.


Krivolutsky, D. A. (1992). Pochvennaya fauna v ekologicheskom kontrole [Soil fauna in ecological control]. Nauka, Moscow (in Russian).


Krivosheina, M. G. (2012). Identification book of the families and genera of Palaearctic dipteran insects of the suborder Nematocera, based on larvae. KMK, Moscow.


Kryzhanovsky, O. L. (1964). Carabidae – Zhuzheliczy [Carabidae – ground beetles]. In: Bey-Bienko, G. A. (Ed.). Opredelitel’ nasekomykh evropejskoj chasti SSSR. Tom 2. Zhestkokrylye i veerokrylye [Insects of the European part of the USSR. Vol. 5. Coleoptera and Strepsiptera]. Nauka, Moscow. Pp. 23–68 (in Russian).


Kunah, O. N., Zhukov, O. V., & Pahomov, A. Y. (2010). Morfologiya doshhovykh cherv’yakiv (Lumbricidae) [Earthworm morphology (Lumbricidae)]. DNU University Press, Dnipropetrovsk (in Ukranian).


Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Kramarenko, A. S., & Yorkina, N. V. (2018). Fitting competing models and evaluation of model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae). Regulatory Mechanisms in Biosystems, 9(2), 198–202.


Kunakh, O., & Kovalenko, D. (2019). Fitting competing models of the population abundance distribution: Land snails from Nikopol Manganese Ore Basin Technosols. Ekologia Bratislava, 38(4), 367–381.


Lavelle, P., Senapati, B., & Barros, E. (2003). Soil macrofauna. In: Schroth, G., & Sinclair, F. L. (Eds.). Trees, crops and soil fertility: Concepts and research methods. CAB International, Wallingford. Pp. 303–323.


Legendre, P., & Birks, H. J. B. (2012). From classical to canonical ordination. In: Birks, H. J. B., Lotter, A. F., Juggins, S., & Smol, J. P. (Eds.). Tracking environmental change using lake sediments: Data handling and numerical techniques. Springer, Dordrecht. Pp. 201–248.


Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271–280.


Li, N., Chu, H., Qi, Y., Li, C., Ping, X., Sun, Y., & Jiang, Z. (2019). Alpha and beta diversity of birds along elevational vegetation zones on the southern slope of Altai Mountains: Implication for conservation. Global Ecology and Conservation, 19, e643.


Lizée, M. H., Mauffrey, J. F., Tatoni, T., & Deschamps-Cottin, M. (2011). Monitoring urban environments on the basis of biological traits. Ecological Indicators, 11(2), 353–361.


Lo, F. C., & Marcotullio, P. J. (2000). Globalisation and urban transformations in the Asia-Pacific region: A review. Urban Studies, 37(1), 77–111.


Magura, T., Lövei, G. L., & Tóthmérész, B. (2010). Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Global Ecology and Biogeography, 19(1), 16–26.


Magura, T., Nagy, D., & Tóthmérész, B. (2013). Rove beetles respond heterogeneously to urbanization. Journal of Insect Conservation, 17(4), 715–724.


Marcotullio, P. J., Braimoh, A. K., & Onishi, T. (2008). The impact of urbanization on soils. In: Braimoh, A. K., & Vlek, P. L. G. (Eds.). Land use and soil resources. Springer, Dordrecht. Pp. 201–250.


Martinez, N. G., Bettez, N. D., & Groffman, P. M. (2014). Sources of variation in home lawn soil nitrogen dynamics. Journal of Environmental Quality, 43(6), 2146–2151.


Mathieu, J., Rossi, J. P., Grimaldi, M., Mora, P., Lavelle, P., & Rouland, C. (2004). A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils, 40(5), 300–305.


McCabe, D. J., & Gotelli, N. J. (2000). Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia, 124(2), 270–279.


McDonnell, M. J., & Pickett, S. T. A. (1990). Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 71(4), 1232–1237.


McDonnell, M., Pickett, S., Groffman, P., Bohlen, P., Pouyat, R., Zipperer, W., Parmelee, R., Carreiro, M., & Medley, K. (1997). Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems, 1(1), 21–36.


Mcintyre, N. E., Knowles-Yánez, K., & Hope, D. (2000). Urban ecology as an interdisciplinary field: Differences in the use of “urban” between the social and natural sciences. Urban Ecosystems, 4(1), 5–24.


McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260.


Melliger, R. L., Rusterholz, H. P., & Baur, B. (2017). Ecosystem functioning in cities: Combined effects of urbanisation and forest size on early-stage leaf litter decomposition of European beech (Fagus sylvatica L.). Urban Forestry and Urban Greening, 28, 88–96.


Michaelis, J., & Diekmann, M. R. (2017). Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS One, 12(8), 1–16.


Minchin, P. R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69, 89–107.


Montalvo, J., Ruiz-Labrador, E., Montoya-Bernabéu, P., & Acosta-Gallo, B. (2019). Rural-urban gradients and human population dynamics. Sustainability, 11(11), 3107.


Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177.


Murata, T., & Kawai, N. (2018). Degradation of the urban ecosystem function due to soil sealing: Involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. Soil Science and Plant Nutrition, 64(2), 145–155.


Nagy, D. D., Magura, T., Horváth, R., Debnár, Z., & Tóthmérész, B. (2018). Arthropod assemblages and functional responses along an urbanization gradient: A trait-based multi-taxa approach. Urban Forestry and Urban Greening, 30, 157–168.


Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 38(3–4), 297–300.


Nemergut, D. R., Schmidt, S. S. K., Fukami, T., O’Neill, S. P., Bilinski, T. M., Stanish, L. F., Knelman, J. E., Darcy, J. L., Lynch, R. C., Wickey, P., Ferrenberg, S., Zhao, S., Qiu, S. S. L., Cao, C., Zheng, C., Zhou, W., He, P., Wang, J. J., Li, X. Y., & Gallagher, E. D. (2014). Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Soil Biology and Biochemistry, 8(3), 1–8.


Niemelä, J. (1999). Ecology and urban planning. Biodiversity and Conservation, 8(1), 119–131.


Niemelä, J., & Kotze, D. J. (2009). Carabid beetle assemblages along urban to rural gradients: A review. Landscape and Urban Planning, 92(2), 65–71.


Niemelä, J., Kotze, D. J., Venn, S., Penev, L., Stoyanov, I., Spence, J., Hartley, D., & Montes de Oca, E. (2002). Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: An international comparison. Landscape Ecology, 17(5), 387–401.


Niemelä, J., Kotze, J., Ashworth, A., Brandmayr, P., Desender, K., New, T., Penev, L., Samways, M., & Spence, J. (2000). The search for common anthropogenic impacts on biodiversity: A global network. Journal of Insect Conservation, 4(1), 3–9.


Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2018). Community Ecology Package. R package version 2.5-2.


Olden, J. D., Poff, N. L. R., & McKinney, M. L. (2006). Forecasting faunal and floral homogenization associated with human population geography in North America. Biological Conservation, 127(3), 261–271.


Palmer, M. W. (1993). Putting things in even better order: The advantages of canonical correspondence analysis. Ecology, 74(8), 2215–2230.


Paoletti, M. G. (1999a). The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems and Environment, 74(1–3), 137–155.


Paoletti, M. G. (1999b). Using bioindicators based on biodiversity to assess landscape sustainability. Agriculture, Ecosystems and Environment, 74(1–3), 1–18.


Paoletti, M. G., & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): Their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems and Environment, 74(1–3), 157–165.


Paoletti, M. G., Osler, G. H. R., Kinnear, A., Black, D. G., Thomson, L. J., Tsitsilas, A., Sharley, D., Judd, S., Neville, P., & D’Inca, A. (2007). Detritivores as indicators of landscape stress and soil degradation. Australian Journal of Experimental Agriculture, 47(4), 412.


Paoletti, M., & Bressan, M. (1996). Soil invertebrates as bioindicators of human disturbance. Critical Reviews in Plant Sciences, 15(1), 21–62.


Pavao-Zuckerman, M. A. (2008). The nature of urban soils and their role in ecological restoration in cities. Restoration Ecology, 16(4), 642–649.


Pavao-Zuckerman, M. A., & Coleman, D. C. (2007). Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Applied Soil Ecology, 35(2), 329–339.


Peck, D. C. (2009). Comparative impacts of white grub (Coleoptera: Scarabaeidae) control products on the abundance of non-target soil-active arthropods in turfgrass. Pedobiologia, 52(5), 287–299.


Perel, T. S. (1979). Rasprostranenie i zakonomernosti raspredeleniya dozhdevykh chervej fauny SSSR [Spread and regularity of the distribution of the earthworms of the USSR fauna]. Nauka, Moscow (in Russian).


Pey, B., Nahmani, J., Auclerc, A., Capowiez, Y., Cluzeau, D., Cortet, J. Ô., Decaëns, T., Deharveng, L., Dubs, F., Joimel, S., Briard, C., Grumiaux, F., Laporte, M. A., Pasquet, A., Pelosi, C., Pernin, C., Ponge, J. F., Salmon, S., Santorufo, L., & Hedde, M. (2014). Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology, 15(3), 194–206.


Pouyat, R. V, Russell-Anem, J., Yesilonis, I. D., & Groffman, P. M. (2003). Soil carbon in urban forest ecosystems. In: Kimble, J. M., Lal, R., Birdsey, R., & Heath, L. S. (Eds.). The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton. Pp. 347–362.


Pouyat, R. V., & Carreiro, M. M. (2003). Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient. Oecologia, 135(2), 288–298.


Pouyat, R. V., Setälä, H., Szlavecz, K., Yesilonis, I. D., Cilliers, S., Hornung, E., Yarwood, S., Kotze, D. J., Dombos, M., McGuire, M. P., & Whitlow, T. H. (2017). Introducing GLUSEEN: A new open access and experimental network in urban soil ecology. Journal of Urban Ecology, 3(1), jux002.


Pouyat, R. V., Szlavecz, K., Yesilonis, I. D., Wong, C. P., Murawski, L., Marra, P., Casey, R. E., & Lev, S. (2015). Multi-scale assessment of metal contamination in residential soil and soil fauna: A case study in the Baltimore-Washington metropolitan region, USA. Landscape and Urban Planning, 142, 7–17.


Pouyat, R. V., Yesilonis, I. D., Dombos, M., Szlavecz, K., Setälä, H., Cilliers, S., Hornung, E., Kotze, D. J., & Yarwood, S. (2015). A global comparison of surface soil characteristics across five cities: A test of the urban ecosystem convergence hypothesis. Soil Science, 180(4–5), 136–145.


Putchkov, A. V., Brygadyrenko, V. V., & Markina, T. Y. (2019). Ground beetles of the tribe Carabini (Coleoptra, Carabidae) in the main megapolises of Ukraine. Vestnik Zoologii, 53(1), 3–12.


Rebele, F. (1994). Urban ecology and special features of urban ecosystems. Global Ecology and Biogeography Letters, 4(6), 173–187.


Reif, J., Marhoul, P., & Koptík, J. (2013). Bird communities in habitats along a successional gradient: Divergent patterns of species richness, specialization and threat. Basic and Applied Ecology, 14(5), 423–431.


Rochefort, S., Therrien, F., Shetlar, D. J., & Brodeur, J. (2006). Species diversity and seasonal abundance of Collembola in turfgrass ecosystems of North America. Pedobiologia, 50(1), 61–68.


Roxburgh, S. H., Shea, K., & Wilson, J. B. (2004). The intermediate disturbance hypothesis: Patch dynamics and mechanisms of species coexistence. Ecology, 85(2), 359–371.


Salminen, J., van Gestel, C. A. M., & Oksanen, J. (2001). Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil. Environmental Toxicology and Chemistry, 20(10), 2287–2295.


Santorufo, L., Van Gestel, C. A. M., Rocco, A., & Maisto, G. (2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161, 57–63.


Schleupner, C., & Link, P. M. (2008). Potential impacts on important bird habitats in Eiderstedt (Schleswig-Holstein) caused by agricultural land use changes. Applied Geography, 28(4), 237–247.


Schleupner, C., & Schneider, U. A. (2013). Allocation of European wetland restoration options for systematic conservation planning. Land Use Policy, 30(1), 604–614.


Schmolzer, K. (1965). Ordnung Isopoda (Landasseln), Liferung 4, 5. Akademie-Verlag, Berlin.


Schrader, S., & Böning, M. (2006). Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans. Pedobiologia, 50(4), 347–356.


Schwartz, M. W., Thorne, J. H., & Viers, J. H. (2006). Biotic homogenization of the California flora in urban and urbanizing regions. Biological Conservation, 127(3), 282–291.


Shaw, E. A., Boot, C. M., Moore, J. C., Wall, D. H., & Baron, J. S. (2019). Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biology and Biochemistry, 130, 177–184.


Shi, G., Shan, J., Ding, L., Ye, P., Li, Y., & Jiang, N. (2019). Urban road network expansion and its driving variables: A case study of Nanjing city. International Journal of Environmental Research and Public Health, 16(13), 2318.


Simon, E., Braun, M., Vidic, A., Bogyó, D., Fábián, I., & Tóthmérész, B. (2011). Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution, 159(5), 1229–1233.


Simon, E., Puky, M., Braun, M., & Tóthmérész, B. (2012). Assessment of the effects of urbanization on trace elements of toe bones. Environmental Monitoring and Assessment, 184(9), 5749–5754.


Simon, E., Vidic, A., Braun, M., Fábián, I., & Tóthmérész, B. (2013). Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environmental Science and Pollution Research, 20(2), 917–924.


Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G., Maskell, L. C., & Firbank, L. G. (2006). Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Royal Society B: Biological Sciences, 273(1601), 2659–2665.


Smetak, K. M., Johnson-Maynard, J. L., & Lloyd, J. E. (2007). Earthworm population density and diversity in different-aged urban systems. Applied Soil Ecology, 37(1–2), 161–168.


Smith, J., Chapman, A., & Eggleton, P. (2006). Baseline biodiversity surveys of the soil macrofauna of London’s green spaces. Urban Ecosystems, 9(4), 337–349.


Sousa, W. P. (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353–391.


Souty-Grosset, C., Badenhausser, I., Reynolds, J. D., & Morel, A. (2005). Investigations on the potential of woodlice as bioindicators of grassland habitat quality. European Journal of Soil Biology, 41(3–4), 109–116.


Steinhardt, U., Herzog, F., Lausch, A., Miller, E., & Lehmann, S. (1999). Hemeroby index for landscape monitoring and evaluation. In: Pykh, Y. A. (Ed.). Environmental indices – system analysis approach. EOLSS Publishing, Oxford. Pp. 237–254.


Sukopp, H. (1969). Der Einfluss des Menschen auf die Vegetation. Vegetatio Acta Geobotanica, 17(1), 360–371.


ter Braak, C. J. F., & Looman, C. W. N. (1986). Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65(1), 3–11.


ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological Research, 18(C), 271–317.


ter Braak, C. J. F., & Šmilauer, P. (2015). Topics in constrained and unconstrained ordination. Plant Ecology, 216(5), 683–696.


Testi, A., Bisceglie, S., Guidotti, S., & Fanelli, G. (2009). Detecting river environmental quality through plant and macroinvertebrate bioindicators in the Aniene River (Central Italy). Aquatic Ecology, 43(2), 477–486.


Tian, Y., Liu, B., Hu, Y., Xu, Q., Qu, M., & Xu, D. (2020). Spatio-temporal land-use changes and the response in landscape pattern to hemeroby in a resource-based city. ISPRS International Journal of Geo-Information, 9(1), 20.


Tóth, Z., & Hornung, E. (2019). Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects, 11(1), 25.


Tóth, Z., Szlavecz, K., Epp Schmidt, D. J., Hornung, E., Setälä, H., Yesilonis, I. D., Kotze, D. J., Dombos, M., Pouyat, R., Mishra, S., Cilliers, S., Yarwood, S., & Csuzdi, C. (2020). Earthworm assemblages in urban habitats across biogeographical regions. Applied Soil Ecology, 151, in press.


Trammell, T. L. E., Pataki, D. E., Pouyat, R. V., Groffman, P. M., Rosier, C., Bettez, N., Cavender-Bares, J., Grove, M. J., Hall, S. J., Heffernan, J., Hobbie, S. E., Morse, J. L., Neill, C., & Steele, M. (2019). Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs, 90(2), e01401.


Tuf, I. H., & Tufova, J. (2008). Proposal of ecological classification of centipede, millipede and terrestrial isopod faunas for evaluation of habitat quality in Czech Republic. Časopis Slezského Zemského Muzea, Série A, Vědy Přírodní, 57, 37–44.


Turbé, A., De Toni, A., Benito, P., Lavelle, P., Lavelle, P., Ruiz, N., Van der Putten, W. H., Labouze, E., & Mudgal, S., (2010). Soil biodiversity: Functions, threaths and tools for policy makers. In: Bio Intelligence Service, IRD, and NIOO, Report for European Commission, DG Environment.


van Rensburg, B. J., Peacock, D. S., & Robertson, M. P. (2009). Biotic homogenization and alien bird species along an urban gradient in South Africa. Landscape and Urban Planning, 92, 233–241.


Vergnes, A., Le Viol, I., & Clergeau, P. (2012). Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biological Conservation, 145(1), 171–178.


Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528(7580), 69–76.


Walz, U., & Stein, C. (2014). Indicators of hemeroby for the monitoring of landscapes in Germany. Journal for Nature Conservation, 22(3), 279–289.


Warren, M. W., & Zou, X. (2002). Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170(1–3), 161–171.


Wiens, J. A. (1989). The ecology of bird communities. Vol. 1 and 2. Cambridge Studies in Ecology. Cambridge University Press, Cambridge.


Wilson, J. B. (1994). The intermediate disturbance hypothesis of species coexistence is based on patch dynamics. New Zealand Journal of Ecology, 18(2), 176–181.


Winter, S. (2012). Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry, 85(2), 293–304.


Wood, J. R., Holdaway, R. J., Orwin, K. H., Morse, C., Bonner, K. I., Davis, C., Bolstridge, N., & Dickie, I. A. (2017). No single driver of biodiversity: Divergent responses of multiple taxa across land use types. Ecosphere, 8(11), e01997.


Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol Manganese Ore Basin, Ukraine). Ecologica Montenegrina, 17, 29–45.


Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekologia Bratislava, 38(1), 1–10.


Zalesskaya, N. T. (1978). Opredelitel’ mnogonozhek-kostyanok SSSR [Identification key to Lithobiidae of USSR]. Nauka, Moscow (in Russian).


Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., & Novikova, V. O. (2018). The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45(1), 8–23.


Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., Fedushko, M. P., Kotsun, V. I., Zhukova, Y. O., & Potapenko, O. V. (2019). Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46(2), 101–114.


Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018a). The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45, 8–23.


Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018b). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekologia Bratislava, 37(3), 301–327.

Published
2020-05-28
Section
Articles

Most read articles by the same author(s)