The effect of polystyrene foam in different doses on the blood parameters and relative mass of internal organs of white mice

Keywords: microplastic; organ mass index; blood biochemical parameters; albumins; globulins; blood enzymatic activity


Due to their durability, versatility and economy, plastic products are widely used in all spheres of human life. Despite the inertness of polymers, recent studies show the ability of microplastic to overcome natural tissue barriers, accumulate in the animal’s body, affect metabolism and change the intestinal microbiota, negatively affecting it. In a 42-day experiment, changes in the internal organs’ relative mass, blood biochemical and morphological parameters of white mice were established under the influence of different doses of polystyrene foam in their diet. Four groups of white mice consumed crushed polystyrene foam particles (10%, 1% and 0.1% by weight of the feed, control group without the addition of polystyrene foam). At the end of the experiment, the morphofunctional state of the internal organs was determined by the organ mass index and blood biochemical parameters. Adding crushed polystyrene foam to the feed in an amount of 1% causes a significant decrease in the mass index of the heart and stomach, 10% – only the heart, and 0.1% – does not affect this indicator. Polystyrene foam had a significant effect on blood biochemical parameters, regardless of the dose, causing an increase in the activity of aspartate aminotransferase against the background of a decrease in the activity of alkaline phosphatase. The content of total bilirubin, urea, urea nitrogen and cholesterol decreased, and the concentration of creatinine and total protein increased (due to the albumin fraction). The use of crushed polystyrene foam in mice did not cause significant changes in the blood morphological composition, except for a dose-dependent increase in the number of monocytes. In the future, it is planned to determine histological, histochemical and immunohistochemical changes in the organs of laboratory animals under the influence of plastic in a laboratory experiment.


Amaral-Zettler, L. A., Zettler, E. R., Slikas, B., Boyd, G. D., Melvin, D. W., Morrall, C. E., Proskurowski, G., & Mincer, T. J. (2015). The biogeography of the Plastisphere: Implications for policy. Frontiers in Ecology and the Environment, 13(10), 541–546.

Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605.

Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12–22.

Andrady, A. L., Hamid, H. S., & Torikai, A. (2003). Effects of climate change and UV-B on materials. Photochemical and Photobiological Sciences, 2(1), 68–72.

Anon, A. (2007). Final report on the safety assessment of polyethylene. ChemInform, 38(31), 200731248.

Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d’Errico, G., Pauletto, M., Bargelloni, L., & Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198, 211–222.

Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998.

Bhatia, S., Prabhu, P. N., Benefiel, A. C., Miller, M. J., Chow, J., Davis, S. R., & Gaskins, H. R. (2014). Galacto-oligosaccharides may directly enhance intestinal barrier function through the modulation of goblet cells. Molecular Nutrition and Food Research, 59(3), 566–573.

Bilan, M. V., Lieshchova, M. A., Brygadyrenko, V. V., & Podliesnova, V. E. (2022). The effect of polystyrene foam on the white mice’s intestinal microbiota. Microbiological Journal, 84(5), in press.

Bilan, M. V., Lieshchova, M. A., Tishkina, N. M., & Brygadyrenko, V. V. (2019). Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regulatory Mechanisms in Biosystems, 10(2), 228–232.

Brygadyrenko, V. V., Lieshchova, M. A., Bilan, M. V., Tishkina, N. M., & Horchanok, A. V. (2019). Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems, 10(4), 497–506.

Carlin, J., Craig, C., Little, S., Donnelly, M., Fox, D., Zhai, L., & Walters, L. (2020). Microplastic accumulation in the gastrointestinal tracts in birds of prey in Central Florida, USA. Environmental Pollution, 264, 114633.

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science and Technology, 47(12), 6646–6655.

Compare, D., Coccoli, P., Rocco, A., Nardone, O. M., De Maria, S., Cartenì, M., & Nardone, G. (2012). Gut-liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutrition, Metabolism and Cardiovascular Diseases, 22(6), 471–476.

Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7, 46687.

Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82.

Eldridge, J. H., Hammond, C. J., Meulbroek, J. A., Staas, J. K., Gilley, R. M., Tice, T. R. (1990). Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer’s patches. Journal of Controlled Release, 11, 205–214.

Engler, R. E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science and Technology, 46(22), 12302–12315.

FAO (2017). Microplastics in fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome.

Fiorentino, I., Gualtieri, R., Barbato, V., Mollo, V., Braun, S., Angrisani, A., Turano, M., Furia, M., Netti, P. A., Guarnieri, D., Fusco, S., & Talevi, R. (2015). Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Experimental Cell Research, 330(2), 240–247.

Grigorakis, S., Mason, S. A., & Drouillard, K. G. (2017). Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere, 169, 233–238.

Haave, M., Gomiero, A., Schönheit, J., Nilsen, H., & Olsen, A. B. (2021). Documentation of microplastics in tissues of wild coastal animals. Frontiers in Environmental Science, 9, 575058.

Halden, R. U. (2010). Plastics and health risks. Annual Review of Public Health, 31(1), 179–194.

Herzlinger, G., Bing, D., Stein, R., & Cumming, R. (1981). Quantitative measurement of C3 activation at polymer surfaces. Blood, 57(4), 764–770.

Hoang, T. C., & Mitten, S. (2022). Microplastic accumulation in the gastrointestinal tracts of nestling and adult migratory birds. Science of the Total Environment, 838, 155827.

Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

Hussain, N., Jaitley, V., & Florence, A. T. (2001). Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 50, 107–142.

Jabeen, K., Li, B., Chen, Q., Su, L., Wu, C., Hollert, H., & Shi, H. (2018). Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere, 213, 323–332.

Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K., Zhou, B., Souissi, S., Lee, S.-J., & Lee, J.-S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-jnk and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental Science and Technology, 50(16), 8849–8857.

Jeong, J., & Choi, J. (2019). Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere, 231, 249–255.

Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of the Total Environment, 649, 308–317.

Jin, Y., Wu, S., Zeng, Z., & Fu, Z. (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution, 222, 1–9.

Jovanović, B. (2017). Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integrated Environmental Assessment and Management, 13(3), 510–515.

Kaposi, K. L., Mos, B., Kelaher, B. P., & Dworjanyn, S. A. (2014). Ingestion of microplastic has limited impact on a marine larva. Environmental Science and Technology, 48(3), 1638–1645.

Koch, H. M., & Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2063–2078.

Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J., & Svendsen, C. (2019). Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environmental Pollution, 255, 113174.

Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, 102(31), 11070–11075.

Lieshchova, M. A., Bilan, M. V., Bohomaz, A. A., Tishkina, N. M., & Brygadyrenko, V. V. (2020). Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 11(2), 153–161.

Lieshchova, M. A., Brygadyrenko, V. V., Tishkina, N. M., Gavrilin, P. M., & Bohomaz, A. A. (2019). Impact of polyvinyl chloride, polystyrene, and polyethylene on the organism of mice. Regulatory Mechanisms in Biosystems, 10(1), 50–55.

Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591–597.

Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V., & McGuckin, M. A. (2008). Mucins in the mucosal barrier to infection. Mucosal Immunology, 1(3), 183–197.

Lu, L., Wan, Z., Luo, T., Fu, Z., & Jin, Y. (2018). Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of the Total Environment, 631–632, 449–458.

Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139.

Moriyama, K., Tagami, T., Akamizu, T., Usui, T., Saijo, M., Kanamoto, N., Hataya, Y., Shimatsu, A., Kuzuya, H., & Nakao, K. (2002). Thyroid hormone action is disrupted by bisphenol a as an antagonist. The Journal of Clinical Endocrinology and Metabolism, 87(11), 5185–5190.

Muncke, J. (2011). Endocrine disrupting chemicals and other substances of concern in food contact materials: An updated review of exposure, effect and risk assessment. The Journal of Steroid Biochemistry and Molecular Biology, 127, 118–127.

Mylostуva, D., Prudnikov, V., Kolisnyk, O., Lykhach, A., Begma, N., Кalinichenko, O., Khmeleva, O., Sanzhara, R., Izhboldina, O., & Mylostyvyi, R. (2022). Biochemical changes during heat stress in productive animals with an emphasis on the antioxidant defense system. Journal of Animal Behaviour and Biometeorology, 10(1), 1–9.

Neis, E., Dejong, C., & Rensen, S. (2015). The role of microbial amino acid metabolism in host metabolism. Nutrients, 7(4), 2930–2946.

Nelms, S. E., Barnett, J., Brownlow, A., Davison, N. J., Deaville, R., Galloway, T. S., Lindeque, P. K., Santillo, D., & Godley, B. J. (2019). Microplastics in marine mammals stranded around the British coast: Ubiquitous but transitory? Scientific Reports, 9, 1075.

Neves, D., Sobral, P., Ferreira, J. L., & Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Marine Pollution Bulletin, 101(1), 119–126.

Nguyen, P., Leray, V., Diez, M., Serisier, S., Bloc’h, J. L., Siliart, B., & Dumon, H. (2008). Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition, 92(3), 272–283.

Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future, 2(6), 315–320.

Pan, Y.-F., Liu, S., Lin, L., Cheng, Y.-Y., Hou, R., Li, H.-X., Yuan, Z., & Xu, X.-R. (2022). Release behaviors of hexabromocyclododecanes from expanded polystyrene microplastics in seawater and digestive fluids. Gondwana Research, 108, 133–143.

Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., Frère, L., Cassone, A.-L., Sussarellu, R., Fabioux, C., Guyomarch, J., Albentosa, M., Huvet, A., & Soudant, P. (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216, 724–737.

Pedà, C., Caccamo, L., Fossi, M. C., Gai, F., Andaloro, F., Genovese, L., Perdichizzi, A., Romeo, T., & Maricchiolo, G. (2016). Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution, 212, 251–256.

Prata, J. C., da Costa, J. P., Lopes, I., Andrady, A. L., Duarte, A. C., & Rocha-Santos, T. (2021). A one health perspective of the impacts of microplastics on animal, human and environmental health. Science of the Total Environment, 777, 146094.

Prata, J. C., Silva, A. L. P., da Costa, J. P., Dias-Pereira, P., Carvalho, A., Fernandes, A. J. S., da Costa, F. M., Duarte, A. C., & Rocha-Santos, T. (2022). Microplastics in internal tissues of companion animals from urban environments. Animals, 12(15), 1979.

Proshad, R., Kormoker, T., Islam, M. S., Haque, M. A., Rahman, M. M., & Mithu, M. M. R. (2017). Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh. International Journal of Health, 6(1), 1–5.

Reguera, P., Viñas, L., & Gago, J. (2019). Microplastics in wild mussels (Mytilus spp.) from the north coast of Spain. Scientia Marina, 83(4), 337–347.

Reilly, K., Fileman, E., McNeal, A. W., Lindeque, P., & Cole, M. (2017). Microplastic ingestion by decapod larvae. In: Baztan, J., Jorgensen, B., Pahl, S., Thomson, R. C., & Vanderlinden, J.-P. (Eds.). Fate and impact of microplastics in marine ecosystems. Elsevier. P. 118.

Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503.

Scherer, C., Brennholt, N., Reifferscheid, G., & Wagner, M. (2017). Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Scientific Reports, 7, 17006.

Schmidt, C., Lautenschlaeger, C., Collnot, E.-M., Schumann, M., Bojarski, C., Schulzke, J.-D., Lehr, C.-M., & Stallmach, A. (2013). Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa – A first in vivo study in human patients. Journal of Controlled Release, 165(2), 139–145.

Skliarov, P., Kornienko, V., Midyk, S., & Mylostyvyi, R. (2022). Impaired reproductive performance of dairy cows under heat stress. Agriculturae Conspectus Scientificus, 87(2), 85–92.

Slack, J. D., Kanke, M., Simmons, G. H., & Deluca, P. P. (1981). Acute hemodynamic effects and blood pool kinetics of polystyrene microspheres following intravenous administration. Journal of Pharmaceutical Sciences, 70(6), 660–664.

Steer, M., Cole, M., Thompson, R. C., & Lindeque, P. K. (2017). Microplastic ingestion in fish larvae in the Western English Channel. Environmental Pollution, 226, 250–259.

Strafella, P., López Correa, M., Pyko, I., Teichert, S., & Gomiero, A. (2020). Distribution of microplastics in the marine environment. In: Rocha-Santos, T., Costa, M., Mouneyrac, C. (Eds.). Handbook of microplastics in the environment. Springer, Cham. Pp. 1–35.

Su, L., Deng, H., Li, B., Chen, Q., Pettigrove, V., Wu, C., & Shi, H. (2019). The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of East China. Journal of Hazardous Materials, 365, 716–724.

Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., Le Goïc, N., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., & Huvet, A. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences, 113(9), 2430–2435.

Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., & vom Saal, F. S. (2009). Components of plastic: Experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2079–2096.

Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669–7678.

Volkheimer, G. (1977). Persorption of particles: Physiology and pharmacology. Advances in Pharmacology, 14, 163–187.

Walton, A., Lahive, E., Svendsen, C., & Galloway, T. (2017). Effects of PVC and nylon microplastics on survival and reproduction of the small terrestrial earthworm Enchytraeus crypticus. In: Baztan, J., Jorgensen, B., Pahl, S., Thomson, R. C., & Vanderlinden, J.-P. (Eds.). Fate and impact of microplastics in marine ecosystems. Elsevier. P. 20.

Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L. J., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D., Narayanaswamy, B. E., & Thompson, R. C. (2014). The deep sea is a major sink for microplastic debris. Royal Society Open Science, 1(4), 140317.

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.

Yamaoka, T., Tabata, Y., & Ikada, Y. (1993). Blood clearance and organ distribution of intravenously administered polystyrene microspheres of different sizes. Journal of Bioactive and Compatible Polymers, 8(3), 220–235.

Zhang, J., Wang, L., & Kannan, K. (2019). Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States. Environmental Science and Technology, 53(20), 12035–12042.

Zhang, J., Wang, L., Trasande, L., & Kannan, K. (2021). Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environmental Science and Technology Letters, 8(11), 989–994.


Most read articles by the same author(s)

> >>