Spatio-temporal dynamics of the penetration resistance of recultivated soils formed after open cast mining

  • A. V. Zhukov Oles Honchar Dnipropetrovsk National University
  • G. А. Zadorozhnaya Oles Honchar Dnipropetrovsk National University
Keywords: mechanical impedance, recultivation, soils composition, ecomorphs


On the basis of studying the spatio-temporal dynamics of soil penetration resistance we proved the existence of the technozem ecomorphs as above horizon soil formations. Research was carried out at a research center for study of recultivation processes in Ordzhonikidze city. Measurement of soils penetration was made in field conditions using an Eijkelkamp penetrometer on a regular grid at depths of up to50 cmwith intervals of5 cm. Calculation of average values and degrees of variation was performed by means of descriptive statistical tools. The extent of soil penetration spatial dependence was assessed and the existence of ecomorphs was proved by means of geostatistical analysis. The degree of associativity of spatial distribution of indicators of a soil body in different years of research was established by means of correlation analysis. The level of variation in space and in time of  technozem penetration generated on loess-like loams, grey-green, red-brown clays, and also pedozems was revealed. The degree of spatial dependence of  technozem penetration within soil layers and also the linear sizes of ecomorphs as above horizon soil structures was established. The time dynamics of  penetration of various recultozems were described. As a result of research into the spatio-temporal dynamics of penetration of technozems, data confirming the hypothesis of the existence of ecomorphs as above horizon morphological soil formations were obtained. An ecomorphic approach to the study of the morphological structure of technozems is proposed. The comparative characteristics of ecomorphs from various types of technozem are presented. The results obtained solve the problem of combining the higher and lowest levels in the hierarchical system of soil organisation as a natural body, which should raise the efficiency of the analysis of relations of morphological elements as a basis for detailed reconstruction of recultivation processes, soil formation, and study of their regimes and functions.


Andrusevich, K.V., 2014. Ekomorficheskaya harakteristika mezofaunyi dernovo-litogennyih pochv na serozelenyih glinah uchastka rekultivatsii Nikopolskogo margantsevo-rudnogo basseyna [Ecomorphical characteristics of mesofauna in the sodlithogenic soils on the grey-green clays at the nicopol manganese ore basin]. Scientific Notes of Taurida National V.I. Vernadsky University. Series Biology and Chemistry 27(2), 11–20 (in Russian).
Bekarevich, N.E., Masyuk, N.T., 1976. Ratsionalnoe ispolzovanie nasyipnogo sloya pochvyi na uchastkah rekultivatsii v chernozemnoy zone [Rational use of a bulk layer of soil on recultivation fields in chernozem region]. In: Osvoenie narushennyih zemel [Development of the destroyed lands]. Nauka, Moscow, 112–150 (in Russian).
Belgard, A.L., 1950. Lesnaja rastitel’nost’ jugo-vostoka USSR [The forest vegetation of the south east of the Ukraine]. Kiev University Press, Kiev (in Russian).
Belgard, A.L., Travleev, A.P., 1980. Rol’ pochvennoj fauny v identifikacii jedafotopov [The role of the soil fauna in edaphotopes indication]. In: Problemy i metody biologicheskoj diagnostiki i indikacii pochv [Problems and methods of biological soil diagnostic and indication]. Moscow State University, Мoscow, 155–163 (In Russian).
Bets, T.J., 2013. Prostranstvennaja neodnorodnost’ tverdosti pochv i ee svjaz’ s jelektricheskoj provodimost’ju pochvy i produktivnost’ju podsolnechnika [Spatial variability of the soil mechanical impedance and its connection with electricrical conductivity and productivity of sunflower]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3(2), 30–44 (in Russian).
Bondar, G.A., Zhukov, A.V., 2011. Jekologicheskaja struktura rastitel’nogo pokrova, sformirovannogo v rezul’tate samozarastanija dernovo-litogennyh pochv na lessovidnyh suglinkah [Plant cover ecological structure formed as a results of self-growing of the sodlithogenic soils on loess-like clays]. Visnik of the Dnipropetrovsk State Agrarian University 1, 54–62 (in Russian).
Cambardella, C.A., Moorman, T.B., Novak, J.M., 1994. Parkin. Field scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. 58, 1501–1511. >>
Cecilia, M., Jesus, H.C., Cortes, С.А., 2012. Soil penetration resistance analysis by multivariate and geostatistical methods. Eng. Agric. Jaboticabal. 32(1), 91–101. >>
Chernyishenko, V.S., Lyisenko, J.J., 2008. Jekomorficheskij analiz A.L. Bel’garda kak teoreticheskaja osnova dlja matematicheskogo prognozirovanija dinamiki populjacij [A.L. Belgard’s ectomorph analisis as a theoretical basis for mathematical prediction of populations dynamics]. Ecology and Noospherology 19, 19–30 (in Russian).
Crus, J.S., Assis, R.N., Matias, S.S.R., Camacho-Tamayo, J.H., Tavares, R.C., 2010. Analise espacial de atributos fisicos e carbono organico em argissolo vermelho-amarelo cultivado com canadeacucar. Scienc. Agrotec. 34(2), 271–278. >>
Diduh, Y.P., Plyuta, P.G., 1991. Gradientniy analiz eklogichnih parametriv roslinnih ugrupovan dolini r. Vorskli (URSR) [Gradient analysis of the plant community ecologica; parameters in river Vorskla valley (UkrSSR)]. Ukr. Bot. J. 48(4), 18–23 (in Ukrainian).
Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre Kyiv.
Diggle, P.J., Ribeiro, J.R., 2000. Model based geostatistics. Associacao Brasileira de Estatistica. Sao Paulo.
Emshanov, D.G., 1995. Pogranichnost’, amficenoticheskie javlenija v lesnyh jekosistemah i ocherednye zadachi ih izuchenija [Marginality and amphicoenotic phenomenon in the forest ecosystems and further task of their investigation]. Ecology and Noospherology 1, 99–109 (in Russian).
Eterevska, L.V., Momot, G.F., Lehtsіer, L.V., 2008. Rekul’tyvovani g’runty: Pidhody do klasyfikacii’ ta systematyky [Reclaimed soils: Approaches to classification and taxonomy]. Gruntoznavstvo 9(3), 147–150 (in Ukrainian).
Grunwald, S., McSweeney, K., Rooney, D.J., Lowery, B., 2001. Soil layer models created with profile cone penetrometer data. Geoderma 103, 181–201. >>
Hamza, M.A., Anderson, W.K., 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Till. Res. 82(2), 121–145. >>
Legendre, P., Fortin, M.J., 1989. Spatial pattern and ecological analysis. Vegetatio 80, 107–138. >>
Lipies, J., Hatano, H., 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116(1–2), 107–136. >>
Martins, A.L.S., Moura, E.G., Camacho-Tamayo, J.H., 2010. Spatial variability of infiltration and its relationship to some physical properties. Ing. Investig. Bogota 30(2), 116–123.
Matveev, N.M., 2003. Optimizacija sistemy jekomorf rastenij A.L. Bel’garda v celjah fitoindikacii jekotopa i biotopa [The system of the A.L. Belgard ecomorphes optimization for the sake of the ecotope and biotope phytoindication]. Visn. Dnipropetr. Univ. Ser. Biol. Ecol. 11(2), 105–113 (in Russian).
Medvedev, V.V., 2009. Tverdost’ i tverdogrammy v issledovanijah po obrabotke pochv [Soild and soildgram in research on the treatment of soil]. Eurasian Soil Sci. 3, 325–336 (in Russian).
Medvedev, V.V., 2013. Vremennaja i prostranstvennaja geterogenizacija raspahivaemyh zemel’ [Time and spatial heterogenization of soil plouger up]. Gruntoznavstvo 14, 5–22 (in Russian).
Moiseev, K.G., 2013. Raschet plotnosti dernovo-podzolistyh supeschanyh pochv po diagrammam tverdosti [Sod-podsol sands soils density calculation on the basis of the soil penetration resistance diagrams]. Eurasian Soil Sci. 10, 1228–1233 (in Russian).
Moncavyo, F.H., Villegas, H.A., Betancur, J.H., Tafur, L.E., 2006. Variabilidad especial de las propiedades quimicas y fisicas en un Typic Udivitrands, arenoso de la Region Andina Central Colombiana. Rev. Fac. Nal. Agr. Medellín 59, 3217–3235.
Peres-Neto, P.R., Jackson, D.A., 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129, 169–178. >>
Ramires-Lopez, L., Reina-Sanchez, A., Camacho-Tamayo, J.H., 2008. Variabilidad espacial de atributos fisicos de un Typic Haplustox de los Llanos Orientales de Colombia. Eng. Agric. Jaboticabal 28(1), 55–63. >>
Salvador-Blanes, S., Cornu, S., Couturier, A., King, D., Macaire, J.J., 2006. Morphological and geochemical properties of soil accumulated in hedge-induced terraces in the Massif Central, France. Soil Till. Res. 85(1–2), 62–77. >>
Serafim, M.E., Vitorino, A.C.T., Peixoto, P.P.P., Souza, C.M.A., Carvalho, D.F., 2008. Intervalo hidrico otimo em um latossolo vermelho distroferrico sob diferentes sistemas de producao. Eng. Аgríc. Jaboticabal 28(4), 654–665. >>
Soracco, C.G., Lozano, L.A., Sarli, G.O., Gelati, P.R., Filgueira, R.R., 2010. Anisotropy of saturated hydraulic conductivity in a soil under conservation and notill treatments. Soil Till. Res. 109, 18–22. >>
Ter Braak, C.J.F., 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179. >>
Valbuena Calderon, C.A., Martines, L.J., Giraldo Henao, R., 2008. Variabilidad espacial del suelo y su relacion con el rendimiento de mango (Mangifera indica L.). Rev. Bras. Frutic. Jaboticabal 30(4), 1146–1151. >>
Verones Junior, V., Carvalho, M.P., Dafonte, J., Freddi, O.S., Vidal Vazquez, E., Ingaramo, O.E., 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil Till. Res. 85, 166–177. >>
Voron, Y.A., 2010. Svojstva sozdavaemoj pochvy pri poslojnoj gornotehnicheskoj i biologicheskoj rekul’tivacii [Propetiеs of soil created by means of layerwise mine-technical and and biological recultivation]. Scientific Bulletin of National Mining University 5, 23–28 (in Russian).
Webster, R., Oliver, M.A., 2007. Geostatistics for environmental scientists. John Wiley and Sons. Hoboken. >>
Zaharchenko, A.V., Zaharchenko, N.V., 2006. Opyt trehmernogo otrazhenija poverhnostej pochvennyh gorizontov v naturnyh issledovanijah [Experience of the 3D morphometry of the soil horizons surfaces in fields investigations]. Eurasian Soil Sci. 2, 153–160 (in Russian).
Zhukov, A.V., Zadorozhnaya, G.A., 2013. Prostranstvennaja izmenchivost’ tverdosti pedozemov [The spatial variability of pedozem mechanical impedance]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3(1), 34–49 (in Russian).
Zhukov, A.V., Zadorozhnaya, G.A., 2015. Fenomen pochvennoj jekomorfy [The phenomenon of soil ecomorphes]. V All-Ukrainian Congress of Ecologists. Collection of scientific abstracts. VNTU. Vinnitsia. P. 190 (in Russian).
Zhukov, A.V., Zadorozhnaya, G.A., 2015. Rol’ vnegorizontnyh pochvennyh morfostruktur v organizacii rastitel’nosti dernovo-litogennyh pochv na ljossovidnyh suglinkah (Nikopol’skij margancevorudnyj bassejn) [The role of the horizon-over morphological structures in vegetation organization of the sod-lithogenic soils on loesslike clays (Nikopol Manganese Ore Basin)]. The Journal of V.N. Karazin Kharkiv National University. Series: Biology 24, 171–186 (in Russian).
Zhukov, О.V., 2010. Ekomorfy Bel’garda – Akimova ta ekologichni matryci [Belgard – Akimov’s ecomorfes and ecological matrix]. Ecology and Noospherology 21(3), 109–111 (in Ukrainian).