A new highly productive Propionibacterium acidipropionici FL-48 strain with increased resistance to propionic acid and the scaling up of its production for industrial bioreactors


  • M. A. Kartashov FermLab LLC
  • T. M. Voinova FermLab LLC
  • A. V. Sergeeva FermLab LLC
  • N. V. Statsyuk FermLab LLC
  • S. V. Rogovsky FermLab LLC
  • Y. O. Grebeneva FermLab LLC
  • D. A. Durnikin Altai State University
Keywords: propionic acid, biopreservatives, biomass accumulation, induced mutagenesis, scaling up

Abstract

Propionic acid bacteria, including Propionibacterium acidipropionici, are widely used in the chemical industry to produce propionic acid and also for food and feed preservation. However, the efficiency of the industrial production of these bacteria is limited by their sensitivity to high concentrations of propionic acid excreted into the cultivation medium. Therefore, the development of new biotechnological processes and strains able to overcome this limitation and to improve the profitability of the microbiological production remains  a relevant problem. A new P. acidipropionici FL-48 strain characterized by an increased resistance to 10 g/L of propionic acid (the number of viable cells after 24-h cultivation reached 1.05 × 106) was developed by a two-step induced mutagenesis using UV and diethyl sulphate from the P. acidipropionici VKPM B-5723 strain. The mutant strain exceeded the parental strain in the biomass accumulation rate and the amount of produced propionic and acetic acids by 35%, 20%, and 16%, respectively. The stability of such important characteristics as the biomass accumulation rate and the viability on media containing heightened concentrations of propionic acid was confirmed by three sequential monoclonal subculturings on a medium supplemented with 10 g/L of propionic acid. The optimization of the cultivation technology made it possible to determine the optimum seed inoculum dose (10% of the fermentation medium volume) and the best pH level for the active growth stage (6.1 ± 0.1). The scaling up of the fermentation to a 100-L bioreactor under observance of optimum cultivation conditions demonstrated a high biomass growth rate with a sufficient reproducability; after 20 h of fermentation, the number of viable cells in the culture broth exceeded 1 × 1010 CFU/mL. The new strain could be interesting as the component of silage and haylage biopreservatives and also could be used as an efficient producer of propionic acid.

References

Aragyn, Y.K., 2012. The use of probiotic strains as silage inoculants. In: Rigobelo, E.C. (ed.). Probiotic in animals. Intech, Rijeka, Croatia.
Balpanov, D.S., Ten, O.A., Esepbay, G.E., Barbasova, S.K., 2014. Tehnologiya polucheniya zakvaski dlya silosovaniya grubostebel’chatykh kormov s ispolzovaniem molochnokislykh i propionovokislykh kul’tur [Technology of a starter production for the preparation of crude feed using lactic acid and propionic acid bacteria]. Biotehnologiya. Teoriya i Praktika 1, 79–84 (in Russian).
Baryshnikov, P.I., Khaustov, V.N., Burtseva, S.V., Nekrasov, R.V., Chabaev, M.G., Zelenchenkova, A.A., Durnikin, D.A., 2016. Povyshenie kachestva kormov i molochnoi produktivnosti korov pri ispol’zovanii novogo biologicheskogo konservanta v liofilizirovannoi forme [Improvement of the silage quality and milk productivity of cattle by the use of a new lyophilized biological preservative]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 6(2), 277–286 (in Russian).
Benfeldt, C., Morgenstern, H.U., 2015. Strains of Propionibacterium. US Patent Application no. 2015/0150298.
Borovikov, V.P., 2003. Statistica. Iskusstvo analiza dannyh na komp’utere [Statistica. The art of a computer data analysis]. 2nd edition. Piter, Saint Petersburg (in Russian).
Coral, J., Karp, S.G., Porto de Souza Vandenberghe, L., Parada, J.L., Pandey, A., Soccol, C.R., 2008. Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Appl. Biochem. Biotechnol. 151, 333–341.
Dawson, E., Rust, R.S., Yokoyama, M.T., 1998. Improved fermentation and aerobic stability of ensiled, high moisture corn with the use of Propionibacterium acidipropionici. J. Dairy Sci. 81, 1015–1021.
Dolezal, L., Zeman, J., Skladanka, J., 2008. Effect of supplementation of chemical preservative on fermentation process of lupine silage. Slovak J. Anim. Sci. 41(1), 30–38.
Filya, I., Sucu, E., Karabulut, A., 2004. The effect of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability of wheat, sorghum and maize silages. J. Appl. Microbiol. 97(4), 818–826. >> doi.org/10.1111/j.1365-2672.2004.02367.x
Filya, I., Sucu, E., Karabulut, A., 2006. The effects of Propionibacterium acidipropionici and Lactobacillus plantarum, applied at ensiling, on the fermentation and aerobic stability of low dry matter corn and sorghum silages. J. Ind. Microbiol. Biotechnol. 33(5), 353–358. >> doi.org/10.1007/s10295-005-0074-z
Ganicheva, T.V., 1992. Mutagenez propionovokislyh bakterii – produtsentov vitamina B12 [Mutagenesis of propionic acid bacteria producing vitamin B12]. Moscow (in Russian).
Hsu, S.-T., Yang, S.-T., 1991. Propionic acid fermentation of lactose by Propionibacterium acidipropionici: Effects of pH. Biotechnol. Bioeng. 38(6), 571–578. >> doi.org/10.1002/bit.260380603
Kim, D.H, Amanullah, S.M., Lee, H.J., Joo, Y.H., Kim, S.C., 2015. Effect of microbial and chemical combo additives on nutritive value and fermentation characteristic of whole crop barley silage. Asian-Austral. J. Anim. Sci. 28(9), 1274–1280. >> doi.org/10.5713/ajas.15.0106
Korniłłowicz-Kowalska, T., Rybczyńska, K., 2014. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants. World J. Microbiol. Biotechnol. 30(6), 1725–1736. >> doi.org/10.1007/s11274-014-1595-2
Kung, L. Jr., Ranjit, N.K., 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 84(5), 1149–1155. >> doi.org/10.3168/jds.s0022-0302(01)74575-4
Levakhin, V.I., Poberukhin, M.M., Sirazetdinov, R.F., Babicheva, I.A., 2012. Vliyanie silosa, zagotovlennogo s biokonservantami, na perevarimost’ pitatel’nyh veshchestv ratsionov i obmen energii v organizme zhivotnykh [Effect of silage prepared with the use of biopreservatives on the digestability of nutrients and energy exchange in the animal organism]. Izvestiya Orenburgskogo GAU 33(1), 244–246 (in Russian).
Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., Chen, J., 2012. Microbial production of propionic acid from Propionibacteria: current state, challenges and perspectives. Crit. Rev. Biotechnol. 32(4), 374–381. >> doi.org/10.3109/07388551.2011.651428
Nanba, B.A., Nucada, R., Nagai, S., 1983. Inhibition byacetic and propionic acids of the growth of Propionibacterium shermanii. J. Ferm. Technol. 61, 551–556.
Netrusov, A.I., Egorova, M.A., 2005. Praktikum po mikrobiologii [Practical training in microbiology]. Akademiya, Moscow (in Russian).
Quesada-Chanto, A., Afschar, A.S., Wagner, F., 1994. Optimization of a Propionibacterium acidipropionici continuous culture utilizing sucrose. Appl. Microbiol. Biotechnol. 42, 16–21. >> doi.org/10.1007/bf00170217
Sheveleva, M.A., Ramenskaya, G.V., 2010. Gazokhromatograficheskiy analiz korotkotsepochechnyh zhirnyh kislot v standartizatsii lekarstvennyh preparatov na osnove bakterial’nyh substantsiy [Gas chromatography analysis of short-chain fatty acids for standardization of drugs based on bacterial substrates]. Khimiko-Farmatsevticheskii Zhurnal 44(6), 50–52 (in Russian).
Stowers, C.C., Cox, B.M., Rodriguez, B.A., 2014. Development of an industrializable fermentation process for propionic acid production. J. Ind. Microbiol. Biotechnol. 41(5), 837–852. >> doi.org/10.1007/s10295-014-1423-6
Tomes, N.J., 1991. Bacterial treatment to preserve silage. US Patent no. 4981705.
Vorobyeva, L.I., 1998. Propionovokislye bakterii [Propionic acid bacteria]. Izd. Moskovskogo Universiteta, Moscow (in Russian).
Wang, Z., Jin, Y., Yang, S.T., 2015. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici. Biotechnol. Bioeng. 112(3), 502–511. >> doi.org/10.1002/bit.25466
Whiter, A.G., Kung, L. Jr., 2001. The effect of a dry or liquid application of Lactobacillus plantarum MTD1 on the fermentation of alfalfa silage. J. Dairy Sci. 84(10), 2195–2202. >> doi.org/10.3168/jds.s0022-0302(01)74666-8
Zhang, C., Shen, H., Zhang, X., Yu, X., Wang, H., Xiao, S., Wang, J., Zhao, Z.K., 2016. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol. Lett. 38(10), 1733–1738. >> doi.org/10.1007/s10529-016-2148-6
Zhang, X., Zhang, R., Yang, T., Zhang, J., Xu, M., Li, H., Xu, Z., Rao, Z., 2013. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World J. Microbiol. Biotechnol. 29(10), 1783–1789. >> doi.org/10.1007/s11274-013-1339-8
Zhu, Y., Li, J., Tan, M., Liu, L., Jiang, L., Sun, J., Lee, P., Du, G., Chen, J., 2010. Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Biores. Technol. 101(22), 8902–8906. >> doi.org/10.1016/j.biortech.2010.06.070
Published
2016-09-22
Section
Articles