Effect of Ni on aspartataminotransferase activity in Glechoma hederacea leaves subject to digging function by mammals

  • O. Y. Pakhomov Oles Honchar Dnipropetrovsk National University
  • O. M. Vasilyuk Oles Honchar Dnipropetrovsk National University
  • T. A. Zamesova Oles Honchar Dnipropetrovsk National University
Keywords: water-soluble protein fraction, the maximum permissible concentration, the total activity of aspartate aminotransferase

Abstract

Using simple and highly sensitive methods of biochemical analysis (determination of total enzyme activity of the class transferase and content of water-soluble protein fraction in Glechoma hederacea L. leaves, as response mechanisms of organisms to environmental change) we have detected an environment forming role played by Talpa europaea L. (european mole), through its digging function, studied against the background of anthropogenic Ni pollution with concentrations of 0.2, 1.0 and 2.0 g/m2, which was equivalent to the presence of Ni at 1, 5, 10 times the dose of maximum permissible concentration (MPC). Thus, we discovered the fact of the reduction in total activity of aspartat­aminotransferase (AST) in G. hederacea leaves by 12–65% and concentrations of water-soluble protein fraction by 30–60% relative to control (the area without pollution of Ni and digging activity of mammals). The combined effect of the digging activity of T. europaea and Ni at doses of 5, 10 MAC contributed to the increased activity of the enzyme from 2.3 to 3.0 times (compared with the control in the corresponding concentration Ni). The concentration of water soluble protein fraction under the combined effect of the digging activity and Ni at maximum concentration in G. hederacea leaves was reduced by 2 times (compared with the control in the corresponding concentration Ni), because it was difficult for the system to operate the mechanisms of recovery and normalization function, while at low and medium metal concentration the processes of protein metabolism increased by 11–150%. Вesides, the іnfluence of the digging activity of mammals (Apodemus sylvaticus L., A. flavicollis Melchior, Clethrionomys glareoles Schreber) as our examples under the condition of artificial Ni soil pollution of the Ni polluted soil in the natural humid forest was assessed. Pollutants drastically influence the proteolityc activity of the soil that reflects microorganism’s metabolism. The digging activity of mammals is shown to boost restoration biological activity of the soil, following the impact of pollutants and plays an essential creative role in the homeostasics mechanism in soil ecosystems. At the burrows dug by mammals proteolityc activity (at a depth of 0–30 cm) increases by 1.99 times at a pollution level of 1 MPC Ni concentration, by 1.92 times – at a level of 5 MPC, by 1.90 times – at 10 MPC compared to areas untouched by mammals. 

References

Akbarimehr, M., Jalilvand, H., 2013. Considering the relationship of slope and soil loss on skid trails in the north of Iran (a case study). J. For. Sci. 59, 339–344.

Alexeev, J.V., 1987. Tjazhelye metally v pochve i rastenijah [Heavy metals in soil and plants]. Nauka, Leningrad (in Russian).

Azcón, R., Perálvarez, M.C., Biró, B., Roldan, A., Ruíz-Lozano, J.M., 2009. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl. Soil Ecol. 41, 168–177.

Becerril, F.R., Juárez-Vázquez, L.V., Hernández-Cervantes, S.C., Acevedo-Sandoval, O.A., Vela-Correa, G., Cruz-Chávez, E., Moreno-Espíndola, I.P., Esquivel-Herrera, A., de León-González, F., 2013. Impacts of manganese mining activity on the environment: Interactions among soil, plants and arbuscular Mycorrhiza. Environ. Contam. Toxicol. 64(2), 219–227. >> doi:10.1007/s00244-012-9827-7

Bernini, E.S., Carmo, T.M.S., Cuzzuol, do G.R.F., 2010. Spatial and temporal variation of the nutrients in the sediment and leaves of two Brazilian mangrove species and their role in the retention of environmental heavy metals. Braz. J. Plant Physiol. 22(3), 177–187. >> doi:10.1590/S1677-04202010000300005

Bіlanich, M.M., 2008. The current state of research of influence of heavy metals on plant life [Suchasnij stan doslіdzhennja vplivu vazhkih metalіv na roslinnij svіt]. Vіsn. Prikarpatsky Univ. Bіol. 12, 161–176 (in Ukrainian).

Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. J. Anal. Biochem. 72, 248–254. >> doi:10.1016/0003-2697(76)90527-3

Bulakhov, V.L., Pakhomov, О.Y., 2006. Biologichne riznomanittja Ukrai’ny. Dnipropetrovs’ka oblast’. Ssavci (Mammalia) [Biological diversity of Ukraine. Dnipropetrovsk region. Mammals (Mammalia)]. Dnipropetrovsk University Press, Dnipropetrovsk (in Ukrainian).

Clemans, S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta J. 212(4), 475–486. >> doi:10.1007/s004250000458

Dzyubak, O.I., Vasilyuk, O.M., 2009. Vplyv hlorydnogo zasolennja na morfometrychni ta biohimichni pokaznyky roslyn u dynamici rostu ta rozvytku [Effect of chloride salinity on morphometric and biochemical indices in the dynamics of plant growth and development]. Fundamental’ni Ta Prykladni Doslidzhennja v biologii: ‘Materialy I Mizhnarodnoi’ Naukovoi’ Konferencii’. Veber, Donets’k, 2, 231–232 (in Ukrainian).

Gardea-Torresdey, J.L., Rosa, G., Peralta-Videa, J.R., Montes, M., Cruz-Jimenez, G., Cano-Aguilera, I., 2005. Differential uptake and transport of trivalent and behexavalent chromium by tumbleweed (Salsola kali). Environ. Contam. Toxicol. 48(2), 225–232. >> doi:10.1007/s00244-003-0162-x

Ghavri, S.V., Singh, R.P., 2010. Phytotranslocation of Fe by biodiesel plant Jatropha curcas L. grown on iron rich wasteland soil. Braz. J. Plant Physiol. 22(4), 235–243. >> doi:10.1590/S1677-04202010000400003

Hameed, A., Mahmooduzzafar, T.N.Q, Siddiqi, T.O., Iqbal, M., 2011. Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure. Braz. J. Plant Physiol. 23(1), 46–54. >> doi:10.1590/S1677-04202011000100007

Hasan, S.A., Hayat, S., Wani, A.S, Ahmad, A., 2011. Establishment of sensitive and resistant variety of tomato on the basis of photosynthesis and antioxidative enzymes in the presence of cobalt applied as shotgun approach. Braz. J. Plant Physiol. 23(3), 175–185.

Hébrard, C., Trap-Gentil, M.V., Lafon-Placette, C., Delaunay, A., Joseph, C., Lefèbvre, M., Barnes, S., Maury, S., 2013. Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting, J. Exp. Bot. 64(2), 651–663. >> doi:10.1093/jxb/ers363

Kupka, I., Podrázský, V., Kubeček, J., 2013. Soil-forming effect of Duoglas fir at lower altitudes – a case study. J. For. Sci. 59, 345–351.

Kong, L.,Wang, Y.-B, Zhao, L.-N. Chen, Z.-H., 2009. Enzyme and root activities in surface-flow constructed wetland. Chemospher. 76, 601–608. >> doi:10.1016/j.chemosphere.2009.04.056

Lefcort, Н., Wehner, E.A., Cocco, P.L., Lefcort, H., 2013. Look inside get aaccess pre-exposure to heavy metal pollution and the odor of predation decrease the ability of snails to avoid stressors. Environ. Contam. Toxicol. 64(2), 273–280. >> doi:10.1007/s00244-012-9821-0

Liu, X.-M., Li, Q., Liang, W.-J., Jiang, Y., 2008. Distribution of soil enzyme activities and microbial biomass along a latitudinal gradient in farmland of Songliao Plain, Northeast China. Pedosphere, 18, 431–440. >> doi:10.1016/S1002-0160(08)60034-X

Martín, J.A.R., Carbonell, G., Nanos, N., Gutiérrez, S.C., 2013. Identification of soil mercury in the Spanish Islands. Environ. Contam. Toxicol. 64(1), 171–179. >> doi:10.1007/s00244-012-9831-y

Medina, A., Azcón, R., 2010. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J. Soil Sci. Plant Nutr. 10(3), 354–372. >> doi:10.4067/S0718-95162010000100009

Melero, S., Vanderlinden, K., Ruiz, J.C., Madejon, E., 2008. Long-term effect on soil biochemical status of a Vertisol under conservation tillage system in semi-arid Mediterranean conditions. Eur. J. Soil Biol. 44, 437–442. >> doi:10.1016/j.ejsobi.2008.06.003

Millaleo, R., Reyes-Díaz, M., Alberdi, M., Ivanov, A.G., Krol, M., Hüner, N.P.A., 2013. Excess manganese differentially inhibits photo system I versus II in Arabidopsis thaliana L. J. Exp. Bot. 64(91), 343–354. >> doi:10.1093/jxb/ers339

Mishustin, Y.N., Nikitin, D.I., Vostrov, I.S., 1968. Prjamoy metod opredelenija summarnoy proteaznoy aktivnosti pochv [The direct method for determination of summary protease activity in soils]. Sborn. Dokladov Simpoziuma po Fermentam Pochvy. Nauka i tehnika, Minsk, 144–150 (in Russian).

Naji, K.M., Devaraj, V.R., 2011. Antioxidant and other bio-chemical defense responses of Macrotyloma uniflorum (Lam.) Verdc. (Horse gram) induced by high temperature and salt stress. Braz. J. Plant Physiol. 23(3), 187–195.

Pakhomov, O.Y., Vasilyuk, O.M., 2012. Vplyv antropogennyh faktoriv na aktyvnist’ transferaz na foni seredovyshhetvirnoi’ funkcii’ ssavciv [The influence of anthropogenic factors on the activity of transferases in the background environment generating function of mammals]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 20(2), 64–70 (in Ukrainian).

Perfetto, B., Lamberti, M., Giuliano, M.T., 2006. Analysis of the signal transduction pathway of nickel-induced matrix metal-loproteinase-2 expression in the human keratinocytes in vitro: preliminary findings. J. Cutan. Pathol. 34(6), 441–447.

Polevoy, V., Maximov, G. (eds.), 1978. Metody biohimicheskogo analiza rastenij [Methods of biochemical analysis of plants]. Leningrad University Publish., Leningrad (in Russian).

Ruscitti, M., Arango, M., Ronco, M., Beltrano, J., 2011. Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Braz. J. Plant Physiol. 23(1), 15–25. >> doi:10.1590/S1677-04202011000100004

Salminen, I., Liiri, M., Haimi, J., 2002. Responses of microbial activity and decomposer organisms to contamination in microcosms containing forest soil. Ecotox. Environ. Save. 53(1), 93–103. >> doi:10.1006/eesa.2001.2215

Shavrukov, Y., 2013. Salt stress or salt shock: Which genes are we studying. J. Exp. Bot. 64(1), 119–127. >> doi:10.1093/jxb/ers316

Sun, J., Cui, J., Luo, C., Gao, L., Chen, Y., Shen, Z., 2013. Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties. Environ. Contam. Toxicol. 64(2), 243–252. >> doi:10.1007/s00244-012-9824-x

Varennes, A., Torres, M.O., Coutinho, J.F., Rocha, M.M.G.S., Neto, M.M.P.M., 1996. Effects of heavy metals on the growth and mineral composition of a nickel hyper accumulator. J. Plant Nutr. 19(5), 669–676. >> doi:10.1080/01904169609365151

Vasilyuk, O.M., Dzyubak, О.І., 2009. Physiological and bio-chemical parameters of plants as markers of a condition of environment. Fundamental’ni ta Prykladni Doslidzhennja v Biologii: Materialy I Mizhnarodnoi’ Naukovoi’ Konferencii’. Weber, Donets’k, 2, 348–349.

Vasilyuk, O.M., Pakhomov, O.Y., 2012. Vplyv ioniv nikelju na funkcional’nu aktyvnist’ transaminaz v lystkah Glechoma hederatia L. v umovah ryjnoi’ aktyvnosti Mammalia [Effect of nickel ions on the functional activity of enzymes in the leaves of Glechoma hederatia L. under conditions of Mammalia digging activity]. Achievement of High school – 2012: Materialy VIІI Mezhdunarodnoj Nauchno-Praktiches¬koj Konferencii. Bjalgrad, Sofija, Bolgarija, 21, 43–49 (in Ukrainian).

Vestena, S., Cambraia, J., Ribeiro, C., Oliveira, J.A, Oliva, M.A., 2011. Cadmium induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Braz. J. Plant Physiol. 23(2), 131–139. >> doi:10.1590/S1677-04202011000200005

Wang, J.B., Chen, Z.H., Chen, L.J., Zhu, A.N., Wu, Z.J., 2011. Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil Environ., 6, 251–257.

Published
2013-10-27
Section
Articles