Formation of the structure of microbiocenoses of soils of agroecosystems depending on trophic and hydrothermal factors

  • O. S. Demyanyuk Institute of Agroeсology and Environmental Management NAAS http://orcid.org/0000-0002-4134-9853
  • V. P. Patyka D. K. Zabolotny Institute of Microbiology and Virology NAS of Ukraine
  • О. V. Sherstoboeva Institute of Agroeсology and Environmental Management NAAS
  • A. A. Bunas Institute of Agroeсology and Environmental Management NAAS http://orcid.org/0000-0003-4806-7004
Keywords: soil microorganisms; graph-analysis; hydrothermic regime; fertilizer

Abstract

Ground soil, as the product primarily of the activity of microbiota, is under the permanent influence of ecological and anthropogenous factors. Soils are especially subject to pressure in agroecosystems, which increases due to the considerable fluctuation of climate system parameters. Using graph analysis, we have estimated the results of multiyear monitoring research on the functioning of microbiocenoses of three soil types in agroecosystems depending on the fertilizing and hydrothermal mode. It enabled us to detect peculiarities of formation of the structure soil microbiocenoses and to better understand ecologically important relations between functional groups of microorganisms in the soil depending on action of different factors. It has been determined that neither application of organic and mineral fertilizers into chernozem nor action of hydrothermal factors (temperature air and humidity) is a crucial characteristic of changing in the structure of its microbiocenosis. Microorganisms-producers of exopolysaccharides, which have a strong relationship with all trophic groups of microorganisms as they are their structural components, turned out to be the main block constructing factor, which is due to their strong influence on total content of microbal mass in soil. For soil of agroecosystems with dark-grey type of soil characteristic of content of total biomass of microorganisms is a basis for block constructing gremium, which affirms the state of microbiocenosis and processes occurring there under the action of researched biotic and abiotic factors. Microbiocenosis of sod-podzolic soil, unlike the other researched types of soils, reacted distinctly on applying of fertilizer and depended on the action of hydrothermal factors. Contrast in the range of hydrothermal regime caused a chaotic character of interaction between the basic characteristics in microbiocenosis of sod-podzolic soil with appearance of a direct and mediated relationship among them. Regardless of changes in hydrothermal factors , interactions between characteristics of total microbial mass content, eutrophic microorganisms, which use mineral and organic forms of nitrogen, and producers of exopolysaccharides were stable. It has been proved that estimating of ecological state of soil and influence of applicable agromeasures on it should be conducted according to the indices of total microorganism biomass content in the soil and correlation between the number of microorganisms which form the graph gremium.

References

Aislabie, J. A., & Deslippe, J. (2013). Soil microbes and their contribution to soil services. In: Dymond, J. R. (Ed.). Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, New Zealand. Pp. 143–161.


Aitkenhead, M. (2016). Modelling soil ecosystem services. In: Sang, N., & Ode-Sang, A. (Еd). A review on the state of the art in scenario modelling for environmental management. Naturvardsverket, Environmental Protection Agency, Stockholm. Pp. 65–74.


Andreyuk, E. A. (1981). Metodologicheskiye aspekty izucheniya mikrobnykh soobshchestv pochv [Methodological aspects of studying microbial communities of soils]. In: Andreyuk, E. A. (Ed). Microbial communities and their functioning in soil. Naukova Dumka, Kyiv. Pp. 13–28 (in Russian).


Aristovskaya, T. V. (Ed.). (1980). Mikrobiologiya protsessov pochvoobrazovaniya [Microbiology of soil formation processes]. Nauka, Leningrad (in Russian).


Banerjee, S., Helgason, B., Wang, L., Winsley, T., Ferrari, B. C., & Siciliano, S. D. (2016a). Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biology and Biochemistry, 95, 40–50.


Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016b). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188–198.


Barberan, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. International Society for Microbial Ecology Journal, 6(2), 343–351.


Bardgett, R. D., Manning, P., Morriën, E., & De Vries, F. T. (2013). Hierarchical responses of plant-soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology, 101, 334–343.


Bell, C., McIntyre, N., Cox, S. Tissue, D., & Zak, J. (2008). Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuas Desert grassland. Microbial Ecology, 56, 153–167.


Bissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters, 16, 128–139.


Bradford, M. A., & Fierer, N. (2012). The biogeography of microbial communities and ecosystem processes: Implications for soil and ecosystem models. In: Wall, D. H., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, H., Ritz, K., Six, J., Strong, D. R., & van der Putten, W. H. (Еds.). Soil Ecology and Ecosystem Services. Oxford University Press, Oxford, UK. Pp. 189–200.


Bradford, M. A. (2013). Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology, 4, 333.


Briones, M. J. I., McNamara, N. P., Poskitt, J., Crow, S. E., & Ostle, N. J. (2014). Interactive biotic and abiotic regulators of soil carbon cycling: Evidence from controlled climate experiments on peatland and boreal soils. Global Change Biology, 20(9), 2971–2982.


Brockett, B. F. T., Prescott, C. E., & Grayston, S. J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44, 9–20.


Bui, E. N., & Henderson, B. L. (2013). C : N : P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil, 373, 553–568.


Calzolari, C., Ungaro, F., Filippi N., Guermandi, M., Malucelli, F., Marchi, N., Staffilani, F., & Tarocco, P. (2016). A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma, 261, 190–203.


Carson, J. K., Gonzalez-Quinones, V., Murphy, D. V., Hinz, C., Shaw, J. A., & Gleeson, D. B. (2010). Low pore connectivity increases bacterial diversity in soil. Applied and Environmental Microbiology, 76(12), 3936–3942.


Corel, E., Lopez, P., Mеheust, R., & Bapteste, E. (2016). Network-Thinking: Graphs to analyze microbial complexity and evolution. Trends Microbiology, 24(3), 224–237.


Chirkov, Y. I. (1979). Use of agroclimatology in crop distribution. In: Seemann, J., Chirkov, Y. I., Lomas, J., & Primault, B. (Eds.). Agrometeorology. Springer-Verlag Berlin Heidelberg, New York. Pp. 317–320.


Cregger, M. A., Sanders, N. J., Dunn, R. R., & Classen, A. T. (2014). Microbial communities respond to experimental warming, but site matters. PeerJ, 2, 358.


De Vries, F. T., & Shade, A. (2013). Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4, 265.


Demyanyuk, О. S., Symochko, L. Y., & Tertychna, O. V. (2017). Suchasni metodychni pidkhody do otsiniuvannia ekolohichnoho stanu gruntu za aktyvnistiu mikrobiotsenozu [Modern methodological approaches to evaluation of the ecological condition of soil by microbial activity]. Problems of Bioindications and Ecology, 22(1), 55–68 (in Ukrainian).


Dermody, O. І., Weltzin, J. F., Engel, E. C., Allen, P., & Norby, R. J. (2007). How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil, 301, 255–266.


Diestel, R. (2006). Graph theory. Springer Science & Business Media, Berlin.


Ferris, H., & Tuomisto, H. (2015). Unearthing the role of biological diversity in soil health. Soil Biology and Biochemistry, 85, 101–109.


Gathara, S. T., Gringof, L. G., Mersha, E., Sinha Ray, K. C., & Spasov, P. (2006). Impacts of desertification and drought and other extreme meterological events. Word meteorological organization commission for agricultural meteorology. Report No. 101, Geneva, Switzerland.


Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms: A review. Soil Biology and Biochemistry, 75, 54–63.


Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B., Calzado, M. R. F., Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Nagy, L., Nakhutsrishvili, G., Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.-P., Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I., & Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111–115.


Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., Beman, J. M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J. C., Glanville, H. C., Jones, D. L., Angel, R., Salminen, J., Newton, R. J., Bürgmann, H., Ingram, L. J., Hamer, U., Siljanen, H. M. P., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R-Q., Nogaro, G., Richter, A., Koranda, M., Castle, S. C., Goberna, M., Song, B., Chatterjee, A., Nunes, O. C., Lopes, A. R., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M. S., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E. S., Basiliko, N., & Nemergut, D. R. (2016). Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Frontiers Microbiology, 7, 214.


Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. Federation of European Microbiological Societies. Microbiology Reviews, 37, 112–129.


Hydbom, S., Ernfors, M., Birgander, J., Hollander, Jensen, E. S., & Olsson, P. A. (2017). Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure. Applied Soil Ecology. 119, 104–114.


Kaisermann, A., Maron, P., Beaumelle, L., & Lata, J. C. (2015). Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Applied Soil Ecology, 86, 158–164.


Kirschboum, M. U. F. (2006). The temperature dependence of organic-matter decomposition – still a topic of debate. Soil Biology and Biochemistry, 38(9), 2510–2518.


Konopka, A., Lindemann, S., & Fredrickson, J. (2015). Dynamics in microbial communities: Unraveling mechanisms to identify principles. International Society for Microbial Ecology Journal, 9(7), 1488–1495.


Kozhevin, P. A. (2004). Ekologiya pochvennykh mikroorganizmov [Ecology of soil microorganisms]. In: Netrusov, A. I. (Ed.). Ecology of microorganisms. Akademiya, Moscow. Pp. 71–94 (in Russian).


Kravchenko, A., Chun, H. C., Mazer, M., Wang, W., Rose, J. B., Smucker, A., & Rivers, M. (2013). Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates. Applied Soil Ecology, 63, 134–142.


Kruglov, Y. V., Umarov, M. M., Mazirov, M. A., Khokhlov, N. F., Patyka, N. V., Dumova, V. A., Andronov, E. E., Kostina, N. V., Golichenkov, M. V. (2012). Izmeneniye agrofizicheskikh svoystv i mikrobiologicheskikh protsessov dernovo-podzolistoy pochvy v ekstremalnykh usloviyakh vysokoy temperatury i zasukhi [Changes in both agro-physical properties and microbiological processes of sod-podzolic soils under extreme conditions of high temperature and drought]. Izvestiya of Timiryazev Agricultural Academy, 3, 79–87 (in Russian).


Kuramae, E. E., Yergeau, E. M., Wong, L. C., Pijl, A. S., van Veen, J. A., & Kowalchuk, G. A. (2012). Soil characteristics more strongly influence soil bacterial communities than land-use type. Microbial Ecology, 79(1), 12–24.


Kutuzova, R. S., Sirota, L. B., Orlova, O. V., & Vorobyov, N. I. (2001). Ispolzovaniye matematicheskogo analiza dlya otsenki mikrobiologicheskogo sostoyaniya pochv agrolandshaftnogo opyta [The use of mathematical analysis to assess the microbiological state of soils agrolandscape experience]. Agricultural Chemistry, 1, 19–33 (in Russian).


Langley, J. A., & Hungate, B. A. (2014). Plant community feedbacks and long-term ecosystem responses to multi-factored global change. AoB Plants, 6, 24–27.


Lesaulnier, C., Papamichail, D., McCorkle, S., Ollivier, B., Skiena, S., Taghavi, S., Zak, D., & van der Lelie, D. (2008). Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environmental Microbiology, 10(4), 926–941.


Li, Y., Adams, J., Shi, Y., Wang, H., He, J.-S., & Chu, H. (2017). Distinct soil microbial communities in habitats of differing soil water balance on the Tibetan Plateau. Scientific Reports, 7, 46407.


Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106–115.


Ma, L., Guo, C., Lü, X., Yuan, S., & Wang, R. (2015). Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in Northeastern China. Biogeosciences, 12, 2585–2596.


McDaniel, M. D., Kaye, J. P., & Kaye, M. W. (2013). Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology and Biochemistry, 56, 90–98.


Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2017). Microbial diversity and soil functions. European Journal of Soil Science, 68(1), 12–26.


Norby, R. J., & Luo, Y. Q. (2004). Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162, 281–293.


Pandey, S. N., Abid, M., & Khan, M. M. A. A. (2018). Diversity, functions, and stress responses of soil microorganisms. In: Egamberdieva, D., & Ahmad, P. (Eds.). Plant microbiome: Stress response. Microorganisms for Sustainability, 5, 1–19.


Paul, E. A. (2014). Soil microbiology, ecology and biochemistry. Academic Press, London, UK.


Paulsn, D. S. (2009). Biostatistics and microbiology: A survival manual. Springer, New York, USA.


Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532, 49–57.


Pereira, E. I. P., Chung, H., Scow, K., & Six, J. (2013). Microbial communities and soil structure are affected by reduced precipitation, but not by elevated carbon dioxide. Soil Science Society of America Journal, 77(2), 482–488.


Pettersson, M., & Baath, E. (2003). Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. Federation of European Microbiological Societies. Microbiology Ecology, 45(1), 13–21.


Rehman, K., Ying, Z., Andleeb, S., Jiang, Z., & Olajide, E. K. (2016). Short term influence of organic and inorganic fertilizer on soil microbial biomass and DNA in summer and spring. Journal of Northeast Agricultural University, 23(1), 20–27.


Romero-Olivares, A. L., Allison, S. D., & Treseder, K. K. (2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry, 107, 32–40.


Schulz, S., Brankatschk, R., Dümig, A., Kögel-Knabner, I., Schloter, M., & Zeyer, J. (2013). The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 10, 3983–3996.


Sheibani, S., & Ahangar, A. G. (2013). Effect of tillage on soil biodiversity. Journal of Novel Applied Sciences, 2(8), 273–281.


Sherstoboeva, E. V., Chabaniuk, Y. V., & Fedak, L. I. (2008). Bioindikatsiya ekologicheskogo sostoyaniya pochv ekosistem [Bioindication of soil ecological consistence]. Agricultural Microbiology, 7, 48–56 (in Russian).


Sherstoboeva, О., Demyanyuk, О., & Chabanyuk, Y. (2017). Biodiahnostyka i biobezpeka gruntiv ahroekosystem [Biodiagnostics and biо-security of soils of agroecosystems]. Agroecological Journal, 2, 142–148 (in Ukrainian).


Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779–790.


Song, H.-S., Cannon, W. R., Beliaev, A. S., & Konopka, A. (2014). Mathematical modeling of microbial community dynamics: A methodological review. Processes, 2(4), 711–752.


Stefurak, V. P., Nakonechna, S. P., & Baskevich, O. V. (2016). Monitorynh zabrudnennia dovkillia v zoni dii pidpryiemstv khimichnoi promyslovosti z vykorystanniam bioindykatoriv [Monitoring of environmental pollution in the area of chemical industry enterprises by means of bioindicators]. Scientific Issues Ternopil Volodymyr Hnatiuk National Pedagogical University, Series: Biology, 1, 95–101 (in Ukrainian).


Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., Rockhold, M. L., & Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. International Society for Microbial Ecology Journal, 7(11), 2069–2079.


Steinweg, J. М., Dukes, J. S., Paul, E. A., & Wallenstein, M. D. (2013). Microbial responses to multi-factor climate change: Effects on soil enzymes. Frontiers in Microbiology, 4, 146.


Suseela, V., Conant, R. T., Wallenstein, M. D., & Dukes, J. S. (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18, 336–348.


Taparauskiene, L., & Miseckaite, O. (2017). Comparison of watermark soil moisture content with Selyaninov hydrothermal coefficient. Agrofor International Journal, 2(2), 106–115.


Thibaut, L. M., & Connolly, S. R. (2013). Understanding diversity-stability relationships: Towards a unified model of portfolio effects. Ecology Letters, 16(2), 140–150.


Torsvik, V., & Ovreas, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5, 240–245.


Treonic, A. M., Austin, E. E., Buyer, J. S., Maul, J. E., Spicer, L., & Zasada, I. A. (2010). Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology, 46(1), 103–110.


Tsiafouli, M. A., Thebault, E., Sgardelis, S. P., de Ruiter, P. C., van der Putten, W. H., Birkhofer, K., Hemerik, L., de Vries, F. T., Bardgett, R. D., Brady, M. V., Bjornlund, L., Jorgensen, H. B., Christensen, S., Hertefeldt, T., Hotes, S., Hol, W. H. G., Frouz, J., Liiri, M., Mortimer, S. R., Setala, H., Tzanopoulos, J., Uteseny, K., Pizl, V., Stary, J., Wolters, V., & Hedlund, K. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21(2), 973–985.


Van der Putten, W. H. (2012). Climate change, aboveground-belowground interactions, and species range shifts. Annual Review of Ecology, Evolution and Systematics, 43, 365–383.


Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Franssen, H. J. H., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., Mcbratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., Young, I. M., & Tiktak, A. (2016). Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone Journal, 15(5), 1–57.


Volkohon, V. V., Nadkernychna, O. V., Tokmakova, L. M., Melnychuk, T. M., Chaikovska, L. O., Nadkernychnyi, S. P., Sherstoboiev, M. K., Kozar, S. F., Kopylov, Y. P., Krutylo, D. V., Parkhomenko, T. I., Kamienieva, I. O., Adamchuk-Chala, N. I., Kovalevska, T. M., Didovych, S. V., Volkohon, K. I., Pyshchur, I. M., Volkohon, M. V., Dimova, S. B., & Komok, M. S. (2010). Eksperymentalna gruntova mikrobiolohiia [Experimental soil microbiology]. Agrarian Science, Kyiv (in Ukrainian).


Vorobyov, N. I., Sviridova, O. V., & Kutuzova, R. S. (2006). Metodicheskiye rekomendatsii po ispolzovaniyu graf-analiza v issledovaniyakh sistem, sostoyashchikh iz bioticheskikh i abioticheskikh komponentov [Methodological recommendations on the use of graph analysis in studies of systems consisting of biotic and abiotic components]. St. Petersburg-Pushkin (in Russian).


Vorobyov, N. I., Sviridova, O. V., Popov, A. A., Rusakova, I. V., & Petrov, V. B. (2011). Graf-analiz genno-metabolicheskikh setey pochvennykh mikroorganizmov, transformiruyushchikh rastitelnyye ostatki v gumusovyye veshchestva [Graph-analysis in gene-metabolic networks of soil microorganisms which transformed plant residues to humus substances]. Agricultural Biology, 3, 88–93 (in Russian).


Wall, D. H., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, T. H., Ritz, K., Six, J., Strong, D. R., & Van der Putten, W. H. (2012). Soil ecology and ecosystem services. Oxford University Press, Oxford.


Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.


Wood, J. D., Gordon, R. J., & Wagner-Riddle, C. (2013). Biases in discrete CH4 and N2O sampling protocols associated with temporal variation of gas fluxes from manure storage systems. Agriculural and Forest Meteorology, 171–172, 295–305.


Wu, Y., Zeng, J., Zhu, Q., Zhang, Z., & Lin, X. (2017). pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Scientific Reports, 7, srep40093.


Xiong, J. B., Sun, H., Peng, F., Zhang, H., Xue, X., Gibbons, S. M., Gilbert, J. A., & Chu, H. (2014). Characterizing changes in soil bacterial community structure in response to short-term warming. Federation of European Microbiological Societies. Microbiology Ecology, 89, 281–292.


Zak, D. R., Holmes, W. E., MacDonald, N. W., & Pregitzer, K. S. (1999). Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Science Society of American Journal, 63, 575–584.


Zhao, C., Fu, S., Mathew, R. P., Lawrence, K. S., & Feng, Y. (2015). Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment. Journal of Plant Ecology, 8(6), 623–632.


Zhao, S., Liu, J.-J., Banerjee, S., Zhou, N., Zhao, Z.-Y., Zhang, K., & Tian, C.-Y. (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8, 4550.


Zhou, J., Deng, Y., Shen, L., Wen, C., Yan, Q., Ning, D., Qin, Y., Xue, K., Wu, L., He, Z., Voordeckers, J. W., Van Nostrand, J. D., Buzzard, V., Michaletz, S. T., Enquist, B. J., Weiser, M. D., Kaspari, M., Waide, R., Yang, Y., & Brown, J. H. (2016). Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 7, 12083.


Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K. M., Arcenegui, V., & Mataix-Beneyto, J. (2009). Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Applied Soil Ecology, 42(3), 315–323.


Zuur, A. K., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. Springer-Verlag, New-York.


Zviahyntsev, D. H. (1987). Pochva i mikroorganizmy [Soil and microorganisms]. Moscow State University, Moscow (in Russian).


Zviahyntsev, D. H. (1991). Metody pochvennoy mikrobiologii i biokhimii [Methods of soil microbiology and biochemistry]. Moscow State University, Moscow (in Russian).

Published
2018-05-14
Section
Articles

Most read articles by the same author(s)