Studying the genetic structure of Quercus robur forest stands on anthropogenically transformed territories using introns of the β-tubulin gene

  • Y. V. Pirko Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine
  • A. E. Demkovich Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine
  • L. O. Kalafat Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine
  • Y. B. Blume Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine
  • О. А. Lykholat University of Customs and Finance
Keywords: spatial structure; molecular markers; polymerase chain reaction


Based on the analysis of the intron polymorphism of β-tubulin genes, the genetic variability of old Quercus robur L. trees from “Holosiivsky” NPP was investigated. The genotyping of 55 old Q. robur trees was carried out; 40 polymorphic and one monomorphic (about 880 bp) TBR fragments were found. High frequency (70–90%) of occurrence of fragments with an approximate molecular weight of 275, 490, 500, and 1110 bp was observed.The genetic polymorphism of old Q. robur trees was assessed as quite high: РІС is 0.22 – 0.39, the effective number of alleles per locus was 1.174–1.268. The Shannon information index was in the range of 0.204–0.269.The geographical differentiation of the genetic structure of centuries-old oak trees from “Holosiivsky” NPP was not pronounced. The share of inter-selection genetic variability (AMOVA) accounts for about 6% of genetic variability, and the geographic component – about 1%. Around 93% of genetic variability is concentrated on the individual level. Using the ТВР method, we found that Q. robur forest stands do not have a stabilized genetic and visible spatial structure, but at the same time they possess a sufficiently large genetic diversity. The absence of a spatial genetic structure may indicate the artificial origin of Q. robur trees from different seed materials, and also that a small number of the plants have survived to this time. In this case, the main influence on the structure of oak stands in “Holosiivsky” NPP was from anthropogenic factors, both in the form of cutting down trees and, possibly, the introduction of alien seed material.


Aldrich, P. R., & Cavender-Bares, J. (2011). Quercus. In: Kole, C. (Ed.) Wild crop relatives: Genomic and breeding resources, forest trees. Springer-Verlag, Berlin. Pp. 89–129.

Aldrich, P. R., Jagtap, M., Michler, C. H., & Romero-Severson, J. (2003). Amplification of North American red oak microsatellite markers in european white oaks and chinese chestnut. Silvae Genetica, 52(3–4), 176–179.

Ashley, M. V., Abraham, S. T., Backs, J. R., & Koenig, W. D. (2015). Landscape genetics and population structure in Valley Oak (Quercus lobata Née). American Journal of Botany, 102(12), 2124–2131.

Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., & Breviario, D. (2004). Tubulin-based polymorphism (TBP): A new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome, 47(2), 281–291.

Benbouza, H., Jacquemin, J.-M., Baudoin, J.-P., & Mergeai, G. (2006). Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnology, Agronomy, Society and Environment, 10(2), 77–81.

Blanco, H., Alberti, M., Forsyth, A., Krizek, K. J., Rodriguez, D. A., Talen, E., & Ellis, C. (2009). Hot, congested, crowded and diverse: Emerging research agendas in planning. Progress in Planning, 71(4), 153–205.

Blume, Y., Yemets, A., Sheremet, Y., Nyporko, A., Sulimenko, V., Sulimenko T., & Draber P. (2010). Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells. BMC Plant Biology, 2010, 10–29.

Braglia, L., Manca, A., Mastromauro, F., & Breviario, D. (2010). cTBP: A successful intron length polymorphism (ILP)-based genotyping method targeted to well defined experimental needs. Diversity, 2(4), 572–585.

Breviario, D., Baird, W. V., Sangoi, S., Hilu, K., Blumetti, P., & Giani, S. (2007). High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Molecular Breeding, 20(3), 249–259.

Brygadyrenko, V. V. (2015). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192.

Chung, M. Y., Nason, J., Chung, M. G., Kim, K.-J., Park, C.-W., Sun, B.-Y., & Pak, J.-H. (2002). Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). American Journal of Botany, 89(8), 1229–1236.

Coelho, A. C., Lima, M. B., Neves, D., & Cravador, A. (2006). Genetic diversity of two evergreen oaks (Quercus suber L. and Q. (ilex) rotundifolia Lam.) in Portugal using AFLP markers. Silvae Genetica, 55(3), 105–118.

Cummins, S. K., & Jackson, R. J. (2001). The built environment and children’s health. Pediatric Clinics of North America, 48(5), 1241–1252.

Curtu, A. L., Craciunesc, I., Enescu, C. M., Vidalis, A., & Sofletea, N. (2015). Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest. iForest – Biogeosciences and Forestry, 8(3), 324–332.

Feng, Y., Sun, W., & Romero-Severson, J. (2008). Heterogeneity and spatial autocorrelation for chloroplast haplotypes in three old growth populations of Northern red oak. Silvae Genetica, 57, 212–220.

Fernández, M. J. F., & Sork, V. L. (2005). Mating patterns of a subdivided population of the Andean oak (Quercus humboldtii Bonpl., Fagaceae). Journal of Heredity, 96, 635–643.

Frouz, J., Vobořilová, V., Janoušová, I., Kadochová, Š., & Matějíček, L. (2015). Spontaneous establishment of late successional tree species English oak (Quercus robur) and European beech (Fagus sylvatica) at reclaimed alder plantation and unreclaimed post mining sites. Ecological Engineering, 77, 1–8.

García-Gómez, H., Aguillaume, L., Izquieta-Rojano, S., Valiño, F., Àvila, A., Elustondo, D., Santamaría, J. M., Alastuey, A., Calvete-Sogo, H., González-Fernández, I., & Alonso, R. (2016). Atmospheric pollutants in peri-urban forests of Quercus ilex: Evidence of pollution abatement and threats for vegetation. Environmental Science and Pollution Research, 23, 6400.

Gaudeul, M., Taberlet, P., & Till-Bottraud, I. (2000). Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Molecular Ecology, 9, 1625–1637.

Gerber, S., Chadœuf, J., Gugerli, F., Lascoux, M., Buiteveld, J., Cottrell, J., Dounavi, A., Fineschi, S., Forrest, L. L., Fogelqvist, J., Goicoechea, P. G., Jensen, J. S., Salvini, D., Vendramin, G. G., & Kremer, A. (2014). High rates of gene flow by pollen and seed in oak populations across Europe. PLoS One, 9(1), e85130.

Green, M. R., & Sambrook, J. (2012). Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Grivet, D., Sork, V. L., Westfall, R. D., & Davis, F. W. (2008). Conserving the evolutionary potential of California valley oak (Quercus lobata Née): A multivariate genetic approach to conservation planning. Molecular Ecology, 17(1), 139–156.

Hampe, A., Pemonge, M.-H., & Petit, R. J. (2013). Efficient mitigation of founder effects during the establishment of a leading-edge oak population. Proceedings of the Royal Society B, 280(1764), 20131070.

Hellmanna, J. J., & Pineda-Krch, M. (2007). Constraints and reinforcement on adaptation under climate change: Selection of genetically correlated traits. Biological Conservation, 137(4), 599–609.

Hongtrakul, V., Huestis, G. M., & Knapp, S. J. (1997). Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: Genetic diversity among oilseed inbred lines. TAG Theoretical and Applied Genetics, 95(3), 400–407.

Jensen, J. S., Olrik, D. C., Siegismund, H. R., & Lowe, A. J. (2003). Population genetics and spatial autocorrelation in an unmanaged stand of Quercus petraea in Denmark. Scandinavian Journal of Forest Research, 18(4), 295–304.

Katičić Bogdan, I., Kajba, D., Šatović, Z., Schüler, S., & Bogdan, S. (2018). Genetic diversity of Pedunculate oak (Quercus robur L.) in clonal seed orchards in Croatia, assessed by nuclear and chloroplast microsatellites. South-East European Forestry, 9(1), 29–46.

Kremer, A., & Petit, R. J. (1993). Gene diversity in natural populations of oak species. Annals of Forest Science, 50(Suppl. 1), 186–202.

Le Hir, H., Nott, A., & Moore, M. J. (2003). How introns influence and enhance eukaryotic gene expression. Trends in Biochemical Sciences, 28(4), 215–220.

Leroy, T., Roux, C., Villate, L., Bodénès, C., Romiguier, J., Paiva, J. A. P., Dossat, C., Aury, J.-M., Plomion, C., & Kremer, A. (2017). Extensive recent secondary contacts between four European white oak species. New Phytologist, 214, 865–878.

Li, J. H., Jin, Z. X., Lou, W. Y., & Li, J. M. (2008). Genetic diversity of Lithocarpus harlandii populations in three forest communities with different succession stage. Frontiers of Forestry in China, 3(1), 106–111.

Li, S.-C., Tang, P., & Lin, W.-C. (2007). Intronic microRNA: Discovery and biological implications. DNA and Cell Biology, 26(4), 195–207.

Lind-Riehl, J., & Gailing, O. (2015). Fine-scale spatial genetic structure of two red oak species, Quercus rubra and Quercus ellipsoidalis. Plant Systematics and Evolution, 301(6), 1601–1612.

McVay, J. D., Hipp, A. L., & Manos, P. S. (2017) A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proceedings of the Royal Society B, 284, 20170300.

Morello, L., & Breviario, D. (2008). Plant spliceosomal introns: Not only cut and paste. Current Genomics, 9(4), 227–238.

Neophytou, C., Aravanopoulos, F., Fink, S., & Dounavi, A. (2010). Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. Forest Ecology and Management, 259(10), 2026–2035.

Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4, 115–123.

Nowak, D. J., McHale, P. J., Ibarra, M., Crane, D. E., Stevens, J. C., & Luley, C. J. (1998). Modeling the effects of urban vegetation on air pollution. In: Gryning, S.-E., & Chaumerliac, N. (Eds.). Air pollution modeling and its application XII. Plenum Press, New York. Pp. 399–407.

Onyshchenko, V. A. (2013). Lisova roslynnist’ ur. Holosiyivs’kyy lis (m. Kyiv) [Forest vegetation of Holosiyivsky wood (Kyiv)]. Biolohichni Systemy, 2013, 5(1), 93–115.

Onyshchenko, V. A. (2015). Vikovi duby Holosiyivs’koho lisu [Old oaks of Holosiyivsky wood]. Zapovidna Sprava, 21, 19–23 (in Ukrainian).

Oyama, K., Ramı’rez-Toro, W., Peñaloza-Ramirez, J. M., Pedraza, A. E. P., Torres-Miranda, C. A., Ruiz-Sánchez, E., & González-Rodríguez, A. (2018). High genetic diversity and connectivity among populations of Quercus candicans, Quercus crassifolia, and Quercus castanea in a heterogeneous landscape in Mexico. Tropical Conservation Science, 11, 1–14.

Peakall, R., & Smouse, P. (2006). GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.

Petit, R. J., Csaikl, U. M., Bordács, S., Burg, K., Coart, E., Cottrell, J., Dam, B., Deans, J. D., Dumolin-Lapègue, S., Fineschi, S., Finkeldey, R., Gillies, A., Glaz, I., Goicoechea, P. G., Jensen, J. S., König, A. O., Lowe, A. J., Madsen, S. F., Mátyás, G., Munro, R. C., Olalde, M., Pemonge, M.-H., Popescu, F., Slade, D., Tabbener, H., Taurchini, D., de Vries, S. G. M., Ziegenhagen, B., & Kremer, A. (2002). Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156(1–3), 5–26.

Pirko, Y. V. (2011). Issledovaniye geneticheskoy izmenchivosti raznykh vidov rasteniy s pomoshch'yu analiza polimorfizma intronov genov β-tubulina [Studying of genetic diversity different species of plants by analyzing polymorphism of introns of β-tubulin genes]. Industrial Botany, 11, 152–156 (in Ukrainian).

Plomion, C., Aury, J. M., Amselem, J., Alaeitabar, T., Barbe, V., Belser, C., Bergès, H., Bodénès, C., Boudet, N., Boury, C., Canaguier, A., Couloux, A., Da Silva, C., Duplessis, S., Ehrenmann, F., Estrada-Mairey, B., Fouteau, S., Francillonne, N., Gaspin, C., Guichard, C., Klopp, C., Labadie, K., Lalanne, C., Le Clainche, I., Leplé, J. C., Le Provost, G., Leroy, T., Lesur, I., Martin, F., Mercier, J., Michotey, C., Murat, F., Salin, F., Steinbach, D., Faivre-Rampant, P., Wincker, P., Salse, J., Quesneville, H., & Kremer, A. (2016). Decoding the oak genome: Public release of sequence data, assembly, annotation and publication strategies. Molecular Ecology Resources, 16(1), 254–265.

Plomion, C., Aury, J. M., Amselem, J., Leroy, T., Murat, F., Duplessis, S., Faye, S., Francillonne, N., Labadie, K., Le Provost, G., Lesur, I., Bartholomé, J., Faivre-Rampant, P., Kohler, A., Leplé, J. C., Chantret, N., Chen, J., Diévart, A., Alaeitabar, T., Barbe, V., Belser, C., Bergès, H., Bodénès, C., Bogeat-Triboulot, M. B., Bouffaud, M. L., Brachi, B., Chancerel, E., Cohen, D., Couloux, A., Da Silva, C., Dossat, C., Ehrenmann, F., Gaspin, C., Grima-Pettenati, J., Guichoux, E., Hecker, A., Herrmann, S., Hugueney, P., Hummel, I., Klopp, C., Lalanne, C., Lascoux, M., Lasserre, E., Lemainque, A., Desprez-Loustau, M. L., Luyten, I., Madoui, M. A., Mangenot, S., Marchal, C., Maumus, F., Mercier, J., Michotey, C., Panaud, O., Picault, N., Rouhier, N., Rué, O., Rustenholz, C., Salin, F., Soler, M., Tarkka, M., Velt, A., Zanne, A. E., Martin, F., Wincker, P., Quesneville, H., Kremer, A., & Salse, J. (2018). Oak genome reveals facets of long lifespan. Nature Plants, 4(7), 440–452.

Pospíšková, M., & Dostálek, J. (2010). Quercus petraea populations: A case study from the Křivoklátsko Protected Landscape Area (Czech Republic). Biodiversity Research and Conservation, 13(1), 37–42.

Rabokon, A. N., Demkovych, A. Y., Pirko, Y. V., & Blume, Y. B. (2015). Polimorfizm dliny intronov genov beta-tubulina kak effektivnyy instrument genotipirovaniya rasteniy [Intron length polymorphism of β-tubulin gene as an effective tool for genotyping of plants]. Molecular and Applied Genetics (Mimsk), 19, 35–44 (in Russian).

Rahman, M. H., Jaquish, B., & Khasa, P. D. (2000). Optimization of PCR protocol in microsatellite analysis with silver and SYBR® stains. Plant Molecular Biology Reporter, 18(4), 339–348.

Rose, A. B. (2002). Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA (New York, N.Y.): RNA Society, Cold Spring Harbor Laboratory Press, 8(11), 1444–1453.

Semerikov, L. F. (1976). Izmenchivost’ duba chereshchatogo (Quercus robur L.) na vostochnoy granites areala [Variability of the oak quiver (Quercus robur L.) on the eastern border of the range]. Ecology, 5, 13–21 (in Russian).

Sork, V. L., & Smouse, P. E. (2006). Genetic analysis of landscape connectivity in tree populations. Landscape Ecology, 21, 821–836.

Sork, V. L., Davis, F. W., Smouse, P. E., Apsit, V. J., Dyer, R. J., Fernandez, J. F., & Kuhn, B. (2002). Pollen movement in declining populations of California valley oak, Quercus lobata: Where have all the fathers gone? Molecular Ecology, 11(9), 1657–1668.

Vasylyuk, O., Kostyushyn, V., Norenko, K., Plyha, A., Prekrasna, Y. E., Kolomytsev, H., & Fatikova, M. (2012). Pryrodno-zapovidnyy fond Kyyivs’koyi oblasti [Natural reserve fund of the Kiev region]. National Ecological Center of Ukraine, Kyiv (in Ukrainian).

Wenting, W., Yi, R., & Hengyu, Z. (2012). Investigation on temperature dropping effect of urban green space in summer in Hangzhou. Energy Procedia, 14, 217–222.

Wolch, J. R., Byrn, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and Urban Planning, 125, 234–244.

Young, A. G., & Pickup, M. (2010). Low S allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. Journal of Applied Ecology, 47, 541–548.