Effects of different fertilizer systems and hydrothermal factors on microbial activity in the chernozem in Ukraine


Keywords: soil; microbial biomass: Сmic/Сorg ratio; emission of carbon dioxide; hydrothermal coefficient; crop yield of winter wheat

Abstract

Groups of microorganisms in soils perform the role of global biogeochemical membrane which provides metabolism of substances and energy between the pedosphere, lithosphere, hydrosphere and living organisms. Сlimate change has resulted in a complex combination of unpredictable changeability of the environment, which is a serious test for the stability and productivity for the natural and anthropogenically transformed ecosystems. Changeability of the hydrothermal factors causes serious changes in the structure and metabolic activity of soil microorganisms, the quality and properties of soil. We studied the impact of hydrothermal factors on the content of carbon, microbial biomass and organic substance in deep chernozem of a natural ecosystem (fallow) and an agroecosystem under different systems of fertilization of winter wheat. A close relationship (r = 0.69–0.79) was determined between the content of microbial biomass in soil and hydrothermal factors (air temperature and moisture). Excessive drought and high parameters of air temperature led to decrease in the content of microbial biomass by 1.5–2.8 times compared to the years with optimum parameters of hydrothermal regime (HTC = 1.0). Leveling out the impact of high temperatures on the productivity of the soil microbiota occurs at a sufficient amount of moisture, and also available nutrients. Drought (HTC = 0.4) and excessive moisture (HTC = 2.0) following heightened air temperatures reduce the release of СО2 from soil. Fallow soil usually has a high content of microbial carbon in the organic compounds of soil (Сmic/Сorg was 2%). In the agroecosystem, there was recorded a decrease by 26–32% of the Сmic specific share in the content of the organic compound of the soil compared to the natural analogue. With organic and organic-mineral systems of fertilization, an increase in Сmic/Сorg parameter occurs and the soil parameters become close to the soil of a natural ecosystem. The calculated ecological coefficients of the orientation of microbial processes in soil indicate a possibility of a balanced functioning of the microbial group and introducing organic and organic-mineral fertilizers, creating optimum conditions for the productivity of winter wheat.

References

Alaswad, A., Benyounis, K. Y., Algoul, O., Dassisti, M., & Olabi, A. G. (2015). Organic materials in biomass. In: Reference module in materials science and materials engineering. Elsevier, Netherlands.


Alvarez, R., Santanatoglia, O., & Garcia, R. (1995). Effect of temperature on soil microbial biomass and its metabolic quotient in-situ under different tillage systems. Biology and Fertility of Soils, 19, 227–230.


Ananyeva, N. D., Polyanskaya, L. M., Stolnikova, E. V., & Zviahyntsev, D. Н. (2010). Sootnosheniye biomassy gribov i bakteriy v profile lesnykh pochv [The ratio of biomass of fungi and bacteria in the profile of forest soils]. Biology Bulletin, 3, 308–317 (in Russia).


Anderson, T. H., & Domsch, K. H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251‒255.


Anderson, T. H., & Domsh, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biology and Biochemistry, 10, 215–221.


Andreyuk, E. A. (1981). Metodologicheskiye aspekty izucheniya mikrobnykh soobshchestv pochv [Methodological aspects of studying microbial communities of soils]. In: Andreyuk, E. A. (Ed). Microbial communities and their functioning in soil. Naukova Dumka, Kyiv. Pp. 13–28 (in Russian).


Bailey, N. T. J. (1995). Statistical methods in biology. Third Edition. Cambridge University Press. New York.


Baldock, J. А. (2007). Composition and cycling of organic C in soil. In: Marschner, P., & Rengel, Z. (Eds.). Nutrient Cycling in Terrestrial Ecosystems. Springer-Verlag, Berlin.


Banerjee, S., Helgason, B., Wang, L., Winsley, T., Ferrari, B. C., & Siciliano, S. D. (2016a). Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biology and Biochemistry, 95, 40–50.


Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016b). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188–198.


Bardgett, R. D., Manning, P., Morriën, E., & De Vries, F. T. (2013). Hierarchical responses of plant-soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology, 101, 334–343.


Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2010). Examining the global distribution of dominant archaeal populations in soil. International Society for Microbial Ecology Journal, 5, 908–917.


Baumann, K., Marschner, P., Smernik, R. J., & Baldok, J. A. (2009). Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology and Biochemistry, 41(9), 1966–1975.


Belyuchenko, I. S. (2016). Mikroorganizmy pedosfery i osobennosti formirovaniya pochvennogo pokrova agrarnykh landshaftov [Microorganisms of the pedosphere and peculiarities of the soil cover of agricultural landscapes]. Polythematic Online Scientific Journal of Kuban State Agrarian University, 121(7), 1016‒1036 (in Russia).


Benbi, D. K., Brar, K., Toor, A. S., & Singh, P. (2015). Total and labile pools of soil organic carbon in cultivated and undisturbed soils in Northern India. Geoderma, 237–238, 149‒158.


Bichel, A., Oelbermann, M., & Echarte, L. (2017). Impact of residue addition on soil nitrogen dynamics in intercrop and sole crop agroecosystems. Geoderma, 304, 76–82.


Blagodatskyj, S. A., Blagodatskaja, E. V., Gorbenko, A. J., & Panikov, N. S. (1987). Regidratacionnyj metod opredelenija biomassy mikroorganizmov v pochve [Rehydration method for determining the biomass of microorganisms in the soil]. Pochvovedenye, 4, 64–71 (in Russian).


Blagodatskyj, S. A., Bogomolova, I. N., & Blagodatskaya, E. V. (2008). Mikrobnaya biomassa i kinetika rosta mikroorganizmov v chernozemakh pri razlichnom selskokhozyaystvennom ispolzovanii [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different land use modes]. Microbiology, 77(1), 113–120 (in Russian).


Bradford, M. A., & Crowther, T. W. (2013). Carbon use efficiency and storage in terrestrial ecosystems. New Phytologist, 199(1), 7–9.


Bünemann, E. K., Bongiorno, G., Bai, Z. G., de Goede, R., Mäder, P., Sukkel, W., & Brussaard, L. (2018). Soil quality – a review. Soil Biology and Biochemistry, 120, 105–125.


Chernov, T. I., Kholodov, V. A., Kogut, B. M., & Ivanov, A. L. (2017). Metodologiya mikrobiologicheskikh issledovaniy pochvy v ramkakh proyekta “Mikrobiom Rossii” [The method of microbiological soil investigations within the framework of the Project “Microbiome of Russia”]. Bulletin of V. V. Dokuchaev Soil Science Institute, 87, 100–113 (in Russian).


Chirkov, Y. I. (1979). Use of agroclimatology in crop distribution. In: Seemann, J., Chirkov, Y. I., Lomas, J., & Primault, B. Agrometeorology. Springer-Verlag Berlin Heidelberg, New York. Pp. 317–320.


Chymytdorzhyeva, E. O., & Chymytdorzhyeva, G. D. (2012). Dinamika ugleroda mikrobnoy biomassy tselinnykh stepnykh i sukhostepnykh pochv Zabaykalia [Dynamics of carbon microbic biomass of virgin chernozems and chestnut soils of Transbaikalia]. Vestnik of Kostroma State University, 18(3), 16–20 (in Russian).


Chymytdorzhyeva, E. O., & Chymytdorzhyeva, G. D. (2014). Nakopleniye i dinamika C-biomassy v krioaridnykh pochvakh Zabaykalia [Accumulation and dynamics of carbon-biomass in krioarid soils of Transbaikalia]. Arid Ecosystems, 20(2), 30–36 (in Russian).


Collins, H. P., Elliott, E. T., & Paustian, K. (2000). Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biology and Biochemistry, 32, 157–168.


Coppens, F., Garnier, P., De Gryze, S., Merckx, R., & Recous, S. (2006). Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. European Journal of Soil Science, 57(6), 894–905.


Davidson, E. A., & Janssens, I. A. (2006). Temperature sensivity of soil carbon decomposition and feed-backs to climate change. Nature, 440, 165–173.


Demyanyuk, O. S., Patyka, V. P., Sherstoboeva, О. V., & Bunas, A. A. (2018). Formation of the structure of microbiocenoses of soils agroecosystems depending on trophic and hydrothermic factors. Biosystems Diversity, 26(2), 103–110.


DSTU 4289:2004 (2005). Jakist' gruntu. Metody vyznachennja organichnoi rechovyny [Soil quality. Methods for determination of organic matter]. National Standard of Ukraine, Кyiv (in Ukrainian).


Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry, 50, 58–65.


Fahrutdynov, A. I. (2010). Dinamika balansa ugleroda i azota estestvennykh i narushennykh pochv KhMAO-Yugry [Dynamics of carbon and nitrogen balance in natural and disturbed soils at HMAO-Yugra]. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 12(4), 1069–1074 (in Russian).


Feng, W., Plante, A. F., Aufdenkampe, A. K., & Six, J. (2014). Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biology and Biochemistry, 69, 398–405.


Gathara, S. T., Gringof, L. G., Mersha, E., Sinha Ray, K. C., & Spasov, P. (2006). Impacts of desertification and drought and other extreme meterological events. Word meteorological organization commission for agricultural meteorology. Report No. 101, Geneva, Switzerland.


German, D. P., Chacon, S. S., & Allison, S. D. (2011). Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology, 92(7), 1471–1480.


Ghafoor, A., Poeplau, C., & Katterer, T. (2017). Fate of straw- and root-derived carbon in a Swedish agricultural soil. Biology and Fertility of Soils, 53(2), 257–267.


Hu, B., Jarosch, A. M., Gauder, M., Graeff-Honninger, S., Schnitzler, J. P., Grote, R., Rennenberg, H., & Kreuzwieser, J. (2018). VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix. Environmental Pollution, 237, 205‒217.


Jiang, X., Wright, A. L., Wang, J., & Li, Z. (2011). Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena, 87, 276–280.


Kaiser, M., Zederer, D. P., Ellerbrock, R. H., Sommer, M., & Ludwing, B. (2016). Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis. Geoderma, 263, 1‒7.


Krasnoperov, A. G., Buyankin, N. I., & Chekster, N. Y. (2018). Vliyaniye struktury dernovo-podzolistoy pochvy na aktivatsiyu pochvennykh i biologicheskikh protsessov v smeshannykh kulturakh [Influence of the structure of sod-podzol soil on activation of soil and biological processes in mixed crops]. Achievements of Science and Technology of AICis, 32(2), 48–51 (in Russian).


Kruglov, Y. V., Umarov, M. M., Mazirov, M. A., Khokhlov, N. F., Patyka, N. V., Dumova, V. A., Andronov, E. E., Kostina, N. V., & Golichenkov, M. V. (2012). Izmeneniye agrofizicheskikh svoystv i mikrobiologicheskikh protsessov dernovo-podzolistoy pochvy v ekstremalnykh usloviyakh vysokoy temperatury i zasukhi [Changes in both agro-physical properties and microbiological processes of sod-podzolic soils under extreme conditions of high temperature and drought]. Izvestiya of Timiryazev Agricultural Academy, 3, 79–87 (in Russian).


Kudeyarov, V. N., Biel, K., Blagodatskyj, S. A., Semenov, V. M., Dem’yanova, E. G., & Dorodnikov, M. V. (2006). Fertilizing effect of the increasing CO2 concentration in the atmosphere. Eurasian Soil Sciences, 39(1), 6–14 (in Russian).


Kurishbayev, A. K., Zvyagin, G. A., Yaroslavtseva, N. V., & Kogut, B. M. (2016). Agrogennaya transformatsiya organicheskogo veshchestva chernozemov Kazakhstana [Kazakhstan black soil organic substance agrogenic transformation]. Samara Journal of Science, 16, 35‒39 (in Russian).


Li, J., Wen, Y., Li, X., Li, Y., Yang, X., Lin, Z., Song, Z., Cooper, J. M., & Zhao, B. (2018). Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research, 175, 281‒290.


Li, S., Zhang, S., Pu, Y., Li, T., Xu, X., Jia, Y., Deng, O., & Gong, G. (2016). Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 155, 289‒297.


Liu, Y., Zhang, J., Yang, W., Wu, F., Xu, Z., Bo, T., He, X., & Guo, L. (2018). Canopy gaps accelerate soil organic carbon retention by soil microbial biomass in the organic horizon in a subalpine for forest. Applied Soil Ecology, 125, 169‒176.


Ludwig, M., Achtenhagen, J., Miltner, A., Eckhardt, K. U., Leinweber, P., Emmerling, C., & Thiele-Bruhn, S. (2015). Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biology and Biochemistry, 81, 311–322.


Lutzow, M., & Kogel-Knabner, I. (2009). Temperature sensitivity of soil organic matter decomposition: What do we know? Biology and Fertility of Soils, 46(1), 1–15.


Lyalko, V. I., Yelistratova, L. A., & Apostolov, A. A. (2014). Issledovaniya problem zasushlivosti na territorii Ukrainy s ispolzovaniyem nazemnoy i sputnikovoy informatsii [Researches of problems of dryness in the territory of Ukraine with use of land and satellite information]. Ukrainian Journal of Remote Sensing, 2, 18–28 (in Ukrainian).


Ma, L., Guo, C., Lü, X., Yuan, S., & Wang, R. (2015). Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences, 12, 2585–2596.


Maillard, E., & Angers, D. A. (2014). Animal manure application and soil organic carbon stocks: A meta-analysis. Global Change Biology, 20(2), 666–679.


Maillard, E., Angers, A. D., Chantigny, M., Bittman, S., Rochette, P., Levesque, G., Hunt, D., & Parent, L. E. (2015). Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application. Agriculture, Ecosystems and Environment, 202, 108‒119.


Maillard, E., Angers, D. A., Chantigny, M., Lafond, J., Pageau, D., Rochette, P., Levesque, G., Leclerc, M. L., & Parent, L. E. (2016). Greater accumulation of soil organic carbon after liquid dairy manure application under cereal-forage rotation than cereal monoculture. Agriculture, Ecosystems and Environment, 233, 171–178.


Malysheva, N. V., Moiseev, B. N., Filipchuk, A. N., & Zolina, T. A. (2017). Metody otsenki balansa ugleroda v lesnykh ekosistemakh i vozmozhnosti ikh ispol’zovaniya dlya raschetov godichnogo deponirovaniya ugleroda [The methods of carbon balance estimation in forest ecosystems and their application to calculate the annual carbon sequestration]. Forestry Bulletin, 21(1), 4–13 (in Russian).


McDaniel, M. D., Kaye, J. P., & Kaye, M. W. (2013). Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology and Biochemistry, 56, 90–98.


Mueller, C. W., Hoeschen, C., Steffens, M., Buddenbaum, H., Hinkel, K., Bockheim, J. G., & Kao-Kniffin, J. (2017). Microscale soil structures foster organic matter stabilization in permafrost soils. Geoderma, 293, 44‒53.


Munoz, C., Paulino, L., Monreal, C., & Zagal, E. (2010). Greenhouse gas (CO2 and N2O) emissions from soils: A review. Chilean Journal of Agricultural Research, 70(3), 485–497.


Myrold, D. D., Zeglin, L. H., & Jansson, J. K. (2014). The potential of metagenomic approaches for understanding soil microbial processes. Soil Science Society of America Journal Abstract, 78(1), 3–10.


NʼDri, A. B., Kone, A. R., Loukou, S. K., Barot, S., & Gignoux, J. (2018). Carbon and nutrient losses through biomass burning, and links with soil fertility and yam (Dioscorea alata) production. Experimental Agriculture, 1–14.


O’Dell, D., Sauer, T. J., Hicks, B. B., Lambert, D. M., Smith, D. R., Bruns, W., Basson, A., Marake, M. V., Walker, F., Michael, D., Wilcox, J., & Eash, N. S. (2014). Bowen ratio energy balance measurement of carbon dioxide (CO2) fluxes of no-till and conventional tillage agriculture in Lesotho. Open Journal of Soil Science, 4(4), 87–97.


Orlova, O. V., Andronov, E. E., Vorobyov, N. I., Kolodyazhnii, A. Y., Moskalevskaya, Y. P., Patyka, N. V., & Sviridova, O. V. (2015). Sostav i funktsionirovaniye mikrobnogo soobshchestva pri razlozhenii solomy zlakovykh kultur v dernovo podzolistoy pochve [Composition and functioning of microbial communities in the decomposition of straw cereals in sod podzolic soil]. Agricultural Biology, 50(3), 305–314 (in Russian).


Pandey, J., Chauhan, A., & Jain, R. K. (2009). Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiology Reviews, 33(2), 324–375.


Pereira, E. I. P., Chung, H., Scow, K., & Six, J. (2013). Microbial communities and soil structure are affected by reduced precipitation, but not by elevated carbon dioxide. Soil Science Society of America Journal, 77(2), 482–488.


Pershina, E. V., Andronov, E. E., Pinaev, A. G., & Provorov, N. A. (2013). Recent advances and perspectives in metagenomic studies of soil microbial communities. Management of Microbial Resources in the Environment, 141–166.


Qi, R., Li, J., Lin, Z., Li, Z., Li, Y., Yang, X., Zhang, J., & Zhao, B. (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 102, 36‒45.


Santana, G. S., Knicker, H., Gonzalez-Vila, F. J., Gonzalez-Perez, J. A., & Dick, D. P. (2015). The impact of exotic forest plantations on the chemical composition of soil organic matter in Southern Brazil as assessed by Py–GC/MS and lipid extracts study. Geoderma Regional, 4, 11–19.


Shahbazac, M., Kuzyakovbc, Y., & Heitkampa, F. (2017). Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma, 304, 76–82.


Shangguan, W., Gong, P., Liang, L., Dai, Y. J., & Zhang, K. (2014). Soil diversity as affected by land use in China: Consequences for Soil Protection. The Scientific World Journal, 2014, 11–19.


Sherstoboeva, O. V., & Demyanyuk, O. S. (2003). Funkcionuvannja mikrobnyh ugrupovan' g'runtu pry vykorystanni na dobryvo pobichnoi' produkcii' roslynnyctva [Functioning of microbial groups of soil when using on the fertilizer of by-products of crop production]. Scientific Magazine of Institute of Agriculture UAAS, 1/2, 17–22 (in Ukrainian).


Sherstoboeva, О., & Demyanyuk, О. (2016). Mikroorhanizmy gruntu v umovakh zmin klimatu [Soil microorganisms under climate change]. News of Dnipropetrovsk State Agrarian and Economic University, 41(3), 28–33 (in Ukrainian).


Sinsabaugh, R. L., Moorhead, D. L., Xu, X., & Litvak, M. E. (2017). Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytology, 47, 777–780.


Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70(2), 555–569.


Suseela, V., Conant, R. T., Wallenstein, M. D., & Dukes, J. S. (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18(1), 336–348.


Swenson, T. L., Jenkins, S., Bowen, B. P., & Northen, T. R. (2015). Untargeted soil metabolomics methods for analysis of extractable organic matter. Soil Biology and Biochemistry, 80, 189–198.


Torres-Sallan, G., Creamer, R. E., Lanigan, G. J., Reidy, B., & Byrne, K. A. (2017). Effects of soil type and depth on carbon distribution within soil macroaggregates from temperate grassland systems. Geoderma, 313, 52–56.


Volkohon, V. V., Nadkernychna, O. V., Tokmakova, L. M., Melnychuk, T. M., Chaikovska, L. O., Nadkernychnyi, S. P., Sherstoboiev, M. K., Kozar, S. F., Kopylov, Y. P., Krutylo, D. V., Parkhomenko, T. I., Kamienieva, I. O., Adamchuk-Chala, N. I., Kovalevska, T. M., Didovych, S. V., Volkohon, K. I., Pyshchur, I. M., Volkohon, M. V., Dimova, S. B., & Komok, M. S. (2010). Eksperymentalna gruntova mikrobiolohiia [Experimental soil microbiology]. Agrarian Science, Kyiv (in Ukrainian).


Wang, G., Post, W. M., & Mayes, M. A. (2013). Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications, 23(1), 255–272.


Weia, K., Suna, T., Tianb, J., Chena, Z., & Chena, L. (2018). Soil microbial biomass, phosphatase and their relationships with phosphorus turnover under mixed inorganic and organic nitrogen addition in a Larix gmelinii plantation. Forest Ecology and Management, 422, 313‒322.


Wood, J. D., Gordon, R. J., & Wagner-Riddle, C. (2013). Biases in discrete CH4 and N2O sampling protocols associated with temporal variation of gas fluxes from manure storage systems. Agriculural and Forest Meteorology, 171–172, 295–305.


Wu, Y., Zeng, J., Zhu, Q., Zhang, Z., & Lin, X. (2017). pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Scientific Reports, 7, srep40093.


Yang, X., Meng, J., Lan, Y., Chen, W., Yang, T., Yuan, J., Liu, S., & Han, J. (2017). Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agriculture, Ecosystems & Environment, 240, 24‒31.


Zhao, S., Liu, J. J., Banerjee, S., Zhou, N., Zhao, Z. Y., Zhang, K., & Tian, C. Y. (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8, 4550.


Zhou, J., Deng, Y., Shen, L., Wen, C., Yan, Q., Ning, D., Qin, Y., Xue, K., Wu, L., He, Z., Voordeckers, J. W., van Nostrand, J. D., Buzzard, V., Michaletz, S. T., Enquist, B. J., Weiser, M. D., Kaspari, M., Waide, R., Yang, Y., & Brown, J. H. (2016). Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 7, 12083.


Zviahyntsev, D. H. (1991). Metody pochvennoy mikrobiologii i biokhimii [Methods of soil microbiology and biochemistry]. Moscow State University, Moscow (in Russian).

Published
2018-11-20
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.