Bryophytes on the devastated territories of sulphur deposits and their role in restoration of dump substrate

Keywords: mosses; life forms; reproduction; photosynthesis activity; organic carbon


Bryophytes possess a wide ecological diapason allowing them to populate substrates of technogenic origins which are scarcely suitable or completely unsuitable for viability of vascular plants. 49 bryophyte species, which belong to 2 divisions, 3 classes, 8 orders, 17 families, and 33 genera have been found on the dump territory of sulphur extraction of the mining-chemical enterprise “Sirka” (Yavoriv district, Lviv region). Seven transects, three on the north slope (base, slope, top), three on the south slope and one on the plateau were laid for sample selections. 20 investigated 0.5 × 0.5 m plots located 2 m apart were analyzed within each 10 × 10 m transect. Specific composition, life forms, projective cover, biomass of bryophytes, numbers of male, female and sterile plants, moisture content in the turfs, pH and physiological investigation of mosses were determined on each plot. The quantitative analysis of the biomorphological structure allowed us to establish the dependence of the spread of life forms on exposition and slope height; essential variability of the projective cover and moss biomass. Bryophyte cover plays an essential part in optimization of the moisture regime and surface layer temperature of technogenic substrates, improving the conditions of growth localities. We established that on the dump the dominant moss species are dioecious with a high level of reproductive effort (sexual and sexless), with short ontogenesis and age of first reproduction, which provides the chance to produce the maximum number of progeny in the minimum period and to form a complete moss cover. The analysis of seasonal moss photosynthesis dynamics has demonstrated the adaptability of moss photosynthetic apparatus to contrasting climatic conditions and the ability to support the intensity of photosynthetic processes on a rather stable level during the vegetative period. Our research showed that bryophytes play an important role in productivity of plant cover on the post-technogenic territories of sulphur extraction. It was found that bryophytes play a role in accumulation of organic carbon and biogenic elements in the substrate of the sulphur extraction dump . Carrying out research of specific composition dynamics and species activity is the precondition for revealing the essence of the dynamic processes taking place in the structure of the bryophyte communities on devastated territories and the influence of these processes on the formation of vegetation on dump complexes.


Alexander, S., Aronson, J., Whaley, O., & Lamb, D. (2016). The relationship between ecological restoration and the ecosystem services concept. Ecology and Society, 21(1), 34–43.

Aronson, J., & Alexander, S. (2013). Ecosystem restoration is now a global priority: Time to roll up our sleeves. Restoration Ecology, 21, 293–296.

Barrett, S. C. H. (2015). Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences, USA, 112, 8859–8866.

Baughman, J. T., Payton, A. C., Paasch, A. E., Fisher, K. M., & McDaniel, S. F. (2017). Multiple factors influence population sex ratios in the Mojave Desert moss Syntrichia caninervis. American Journal of Botany, 104(5), 733–742.

Bisang, I. J., Hedenäs, L., & Cronberg, N. (2017). Can the meiotic sex ratio explain the sex ratio bias in adult populations in the dioicous moss Drepanocladus lycopodioides? Journal of Bryology, 39(2), 115–120.

Bisang, I., & Ehrlen, J. (2002). Reproductive effort and cost of sexual reproduction in female Dicranum polysetum. The Bryologist, 105(3), 384–397.

Bisang, I., & Hedenäs, L. (2005). Sex ratio patterns in dioicous bryophytes revisited. Journal of Bryology, 27, 207–219.

Bisang, I., Ehrlen, J., Persson, C., & Hedenäs, L. (2014). Familial affiliation, sex ratio and sporophyte frequency in unisexual mosses. The Botanical Journal of the Linnean Society, 174, 163–172.

Boiko, M. (1999). Analiz brioflory stepnoj zoni Evropy [The analysis of the steppe zone bryoflora of Europe]. Fitosociocentr, Kyiv (in Russian).

Boiko, M. F. (2014). The second checklist of bryobionta of Ukraine. Chornomorskyi Botanichnyi Zhurnal, 10(4), 426–487.

Botting, R. S., & Fredeen, A. L. (2006). Net ecosystem CO2 exchange for moss and lichen dominated forest floors of oldgrowth subboreal spruce forests in central British Columbia, Canada. Forest Ecology and Management, 235, 240–251.

Bowden, R. D. (1991). Input, outputs and accumulation of nitrogen in an early successional moss (Polytrichum) ecosystem. Ecological Monographs, 61(2), 207–223.

Bowden, W. B., Arscott, D., & Pappathanasi, D. (1999). Roles of bryophytes in stream ecosystems. Journal of the North American Benthological Society, 18(2), 151–184.

Bramley-Alves, J., King, D. H., Robinson, S. A., & Miller, R. E. (2014). Dominating the antarctic environment: Bryophytes in a time of change. Photosynthesis in Bryophytes and Early Land Plants, 17, 309–324.

Brisbee, K. E., Gower, S. T., Norman, J. M., & Nordheim, E. V. (2001). Environmental control on ground cover species composition and productivity in a boreal black spruce forest. Oecologia, 129, 261–270.

Bueno de Mesquita, C. P., Knelman, J. E., King, A. J., Farrer, E. C., Porazinska, D. L., Schmidt, S. K., & Suding, K. N. (2017). Plant colonization of moss-dominated soils in the alpine: Microbial and biogeochemical implications. Soil Biology and Biochemistry, 111, 135–142.

Casanova-Katny, A., Torres-Mellado, G. A., & Eppley, S. M. (2016). Reproductive output of mosses under experimental warming on Fildes Peninsula, King George Island, maritime Antarctica. Revista Chilena de Histories Natural, 89(1), 13–22.

Cortina-Segarra, J., Decleer, K., & Kollmann, J. (2016). Speed restoration of EU ecosystems. Nature, 535, 231.

Crawford, M., Jesson, L. K., & Garnock-Jones, P. J. (2009). Correlated evolution of sexual system and life-history traits in mosses. Evolution, 63, 1129–1142.

Crowley, P. H, Stieha, C. R., & McLetchie, D. N. (2005). Overgrowth competition, fragmentation and sex-ratio dynamics: A spatially explicit, sub-individual-based model. Journal of Theoretical Biology, 233, 25–42.

Csintalan, Z., Takács, Z., Proctor, M. C. F., Nagy, Z., & Tuba, Z. (2000). Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland. Plant Ecology, 151(1), 51–54.

Cui, X., Gu, S., Wu, J., & Tang, Y. (2009). Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau. Ecological Research, 24, 645–653.

DeLucia, E. H., Turnbull, M. H., Walcroft, A. S., Griffins, K. L., Tissue, D. T., Glenny, D., McSeveny, T. M., & Whitehead, D. (2003). The contribution of bryophytes to the carbon exchange for a temperate rainforest. Global Change Biology, 9(11), 58–70.

Devos, N., Renner, M. A. M., Gradstein, R., Shaw, A. J., Laenen, B. & Vanderpoorten, A. (2011). Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus Radula. New Phytologist, 192, 225–236.

Douma, J., Van Wijk, M. T., Lang, S. I., & Shaver, G. R. (2007). The contribution of mosses to the carbon and water exchange of arctic ecosystems: Quantification and relationships with system properties. Plant, Cell and Environment, 30, 1205–1215.

During, H. J. (1992). Ecological classifications of bryophytes and lichens [Bryophytes and lichens in a changing environment]. Clarendon Press, Oxford.

During, H. J., & van Tooren, B. F. (1990). Bryophyte interactions with other plants. The Botanical Journal of the Linnean Society, 104, 79–98.

Fuselier, L., & McLetchie, D. N. (2004). Microhabitat and sex distribution in Marchantia inflexa, a dioicous liverwort. The Bryologist, 107(3), 345–356.

Gecheva, G., Pall, K., & Hristeva, Y. (2017). Bryophyte communities responses to environmental factors in highly seasonal rivers. Botany Letters, 164(1), 79–91.

Glime, G. M. (2006). Bryophyte ecology. Biological Sciences, Michigan Technological University.

Goffinet, B., & Shaw, A. J. (Eds.). (2009). Bryophyte biology. Cambridge University Press, Cambridge.

Grogan, P., & Jonasson, S. (2006). Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type. Global Change Biology, 12, 1479–1495.

Haig, D. (2016). Living together and living apart: The sexual lives of bryophytes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 1706–1715.

Hanson, D. T., & Rice, S. K. (2014). Photosynthesis in bryophytes and early land plants. Springer Dordrecht Heidelberg, New York, London.




Horodnii, M. M., Lisoval, A. P., & Bykin, A. V. (2005) Ahrokhimichnyi analiz [Agrochemical analysis]. Aristei, Kyiv (in Ukrainian).


Ignatov, M. S., & Ignatova, E. A. (2003). Flora mkhov srednej chasti evropejskoj Rossii [Moss flora of Central European Russia]. 1: Sphagnaceae – Hedwigiaceae. KMK, Moscow (in Russian).

Ignatov, M. S., & Ignatova, E. A. (2004). Flora mkhov srednej chasti evropejskoj Rossii [Moss flora of Central European Russia]. 2: Fontinalaceae – Amblistegiaceae. KMK, Moscow (in Russian).

Jackson, T. A. (2015). Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment. Geoderma, 251–252, 78–91.

Jesson, L. K., Cavanagh, A. P., & Perley, D. S. (2011). Polyploidy influences sexual system and mating patterns in the moss Atrichum undulatum sensu lato. Annals of Botany, 107(1), 135–143.

Karpinets, L., Lobachevska, O., & Baranov, V. (2016). Vplyv mokhiv na mikroklimatychni umovy edafotopiv porodnyh vidvaliv i i’hni adaptacijni reakcii [Influence of mosses on microclimatic conditions of edaphotop of rock dumps and their adaptive responses]. Studia Biologica, 10(3–4), 119–128.

Khryanin, V. N. (2007). Evoljucija putej polovoj differenciacii u rastenij [Evolution of the pathways of sex differentiation in plants]. Fiziologiya Rasteni, 54(6), 945–952 (in Russian).

Kubásek, J., Hájek, T., & Glime, J. M. (2014). Bryophyte photosynthesis in sunflecks: Greater relative induction rate than in tracheophytes. Journal of Bryology, 36(2), 110–117.

Kyyak, N. Y. (2014). Sezonni zminy vmistu komponentiv hlutationo-askorbatnoho tsyklu v mokhakh na terytorii vidvalu vydobutku sirky [Seasonal changes of the glutathione-ascorbate cycle components content in shoots of the mosses on the sulfur deposits dump area]. Visnyk Lvivskoho Universytetu, Seriia Biolohichna, 67, 189–197 (in Ukrainian).

Kyyak, N. Y. (2015). Osoblyvosti fiziolohichnykh pokaznykiv vodnoho rezhymu u briofitiv iz riznoyu tolerantnistyu do defitsytu volohy [Peculiarities of physiological indexes of water regime in the bryophytes with a different tolerance to water deficit]. Visnyk Lvivskoho Universytetu, Seriia Biolohichna, 70, 245–255 (in Ukrainian).

Kyyak, N. Y., & Khorkavtsiv, Y. D. (2015). Adaptatsiya briofitiv do vodnogo defitsytu na terytoriyi vidvalu v mistsyah vydobutku sirky [Adaptation of the bryophytes to water deficit in the dump area at sulfur deposit sites]. Ukrainian Botanical Journal, 72(6), 566–573 (in Ukrainian).

Kyyak, N., Baik, O., & Kit, N. (2017). Morfo-fIziologichna adaptatsiya briofitiv do ekologichnyh faktoriv na devastovanyh terytoriyah vydobutku sirky [Morpho-physiological adaptation of bryophytes to environmental factors on the devastated territories of sulphur extraction]. ScienceRise: Biological Science, 5(8), 33–38 (in Ukrainian).

Lobachevska, O. V., & Sokhanchak, R. R. (2017). Reproduktyvna strategija adventyvnogo mohu Сampylopus introflexus (Hedw.) Brid. (Bryophyta: Leucobryaceae) na terytorijah girnychovydobuvnyh pidpryjemstv L'vivshhyny [Reproductive strategy of the alien moss Campylopus introflexus (Hedw.) Brid. (Leucobryaceae, Bryophyta) in areas of mining enterprises in Lviv Region]. Ukrainian Botanical Journal, 74(1), 46–55 (in Ukrainian).

Longton, R. E. (1992). Reproduction and rarity in British mosses. Biological Conservation, 59(2–3), 89–98.

Longton, R. E. (2006). Reproductive ecology of bryophytes: What does it tell us about the significance of sexual reproduction? Lindbergia, 31, 16–23.

Lüttge, U., Beck, E., Dorothea, B., Green, T. G. A., Sancho, L. G., & Pintado, A. (2011). Plant desiccation tolerance. Heidelberg Springer-Verlag, Berlin.

Maciel-Silva, A. S., & Válio, I. F. (2011). Reproductive phenology of bryophytes in tropical rain forests: The sexes never sleep. The Bryologist, 114(4), 708–719.

Marschall, M., & Proctor, M. C. F. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 2004, 94.

Martin, C. E., & Adamson, V. J. (2001). Photosynthetic capacity of mosses relative to vascular plants. Journal of Bryology, 23(4), 319–323.

McDaniel, S. F., & Perroud, P.-F. (2012). Invited perspective: Bryophytes as models for understanding the evolution of sexual systems. The Bryologist, 115(1), 1–11.

Moreno-Mateos, D., Power, M. E., Comin, F. A., & Yockteng, R. (2012). Structural and functional loss of restored wetland ecosystems. Public Library of Science Biology, 10(1), e1001247.

Nikolaichuk, V. I., Belchhazi, V. I., & Bilyk, P. P. (2000). Spetspraktykum z fiziolohii i biokhimii roslyn [Special practice on plants physiology and biochemistry]. Patent, Uzhhorod (in Ukrainian).

O’Neill, K. P. (2000). Role of bryophyte-dominated ecosystems in the global carbon budget. In: Shaw, A. J., & Goffinet, B. (Еds.). Bryophyte biology. Oxford. Pp. 344–368.

Proctor, M. C. F. (1990). The physiological basis of bryophyte production. Botanical Journal of the Linnean Society, 104(1–3), 61–77.

Proctor, M. C. F. (2000). The bryophyte paradox: Tolerance of desiccation, evasion of drought. Plant Ecology, 151, 41–49.

Proctor, M. C. F. (2002). Ecophysiological measurements on two pendulous forest mosses from Uganda, Pilotrichella ampullacea and Floribundaria floribunda. Journal of Bryology, 24(3), 223–232.

Proctor, M. C. F., & Smirnoff, N. (2011). Ecophysiology of photosynthesis in bryophytes: Major roles for oxygen photoreduction and non-photochemical quenching? Physiologia Plantarum, 141, 130–140.

Rabyk, І. V., Lobachevska, O. V., Shcherbachenko, O. I., & Danilkіv, І. S. (2017). Mohopodibni jak indykatory vidnovlennja posttehnogennyh landshaftiv vydobutku sirky [Bryophytes as indicators of recovery posttechnogenic landscapes of sulfur extraction]. Chornomorski Botanical Journal, 13(4), 468–480.

Seedre, M., & Chen, H. Y. (2010). Carbon dynamics of aboveground live vegetation of boreal mixedwoods after wildfire and clear-cutting. Canadian Journal of Forest Research, 40(9), 1862–1869.

Shaw, A. J., & Goffinet, B. (Eds.). (2000). Bryophyte biology. Cambridge University Press, Cambridge.

Shcherbachenko, O. I., Rabyk, I. V., & Lobachevska, O. V. (2015). Uchast mohopodibnyh u renaturalizacii devastovanyh terytorij Nemyrivskogo rodovyshha sirky (L'vivs'ka obl.) [Role of bryophytes in renaturalization of the devastated areas of Nemyriv sulfur deposit (Lviv Region)]. Ukrainian Botanical Journal, 72(6), 596–602 (in Ukrainian).

Shengqi, S., Yiming, Z., Jian, G. Q., Weizhi, Y., & Zhenhua, M. (2010). Optimization of the method for chlorophyll extraction in aquatic plants. Journal of Freshwater Ecology, 25(4), 531–538.

Sinclair, J. P., Emlen, J., & Freeman, D. C. (2012). Biased sex ratios in plants: Theory and trends. The Botanical Review, 78, 63–86.

Söderström, L., & During, H. J. (2005). Bryophyte rarity viewed from the perspectives of life history strategy and metapopulation dynamics. Journal of Bryology, 27, 259–266.

Stark, L. R. (2002). Phenology and its repercussions on the reproductive ecology of mosses. Bryologist, 105, 204–218.

Stark, L. R. (2017). Ecology of desiccation tolerance in bryophytes: A conceptual framework and methodology. The Bryologist, 120(2), 129–164.

Stark, L. R., Brinda, J. C., & McLetchie, D. N. (2009). An experimental demonstration of the cost of sex and a potential resource limitation on reproduction in the moss Pterygoneurum (Pottiaceae). American Journal of Botany, 96(9), 1712–1721.

Street, L. E., Stoy, P. C., Sommerkorn, M., Fletcher, B. J., Sloan, V. L., Hill, T. C., & Williams, M. (2012). Seasonal bryophyte productivity in the sub-Arctic: A comparison with vascular plants. Functional Ecology, 26(2), 365–378.

Street, L. E., Subke, J. A., Sommerkorn, M., Heinemeyer, A., & Williams, M. (2011). Turnover of recently assimilated carbon in arctic bryophytes. Oecologia, 167, 325–337.

Szövényi, P., Ricca, M., & Shaw, A. J. (2009). Multiple paternity and sporophytic inbreeding depression in a dioicous moss species. Heredity, 103, 394–403.

Tolvanen, A., & Aronson, J. (2016). Ecological restoration, ecosystem services, and land use: A European perspective. Ecology and Society, 21(4), 47–52.

Turetsky, M. (2003). The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106(3), 395–409.

Xiao, B., & Veste, M. (2017). Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China. Applied Soil Ecology, 117–118, 165–177.