Nanotechnologies in crop cultivation: Ecotoxicological aspects


Keywords: nanotechnology; nanomaterials; nanoparticles; environmental; nanoecotoxicity; agriculture

Abstract

The European Commission has recognized nanotechnologies as extremely promising for increasing competitiveness of different sectors of the economy. On account of climate changes and the quest for food security, they are an effective way of solving key problems in the agrarian sector. Nowadays nanotechnologies are widely used for creating nanofertilizers, nanoinsecticides, nanofungicides, nanoherbicides and other nanopreparations. Numerous researches affirm advantages of nanopreparations, which has helped them find a wide use in agricultural practice. At the same time, nanopreparations are the source of entry into the environment of nanoparticles (size less than 100 nm) which are characterized by large active surface and specific physical-chemical properties different from ordinary chemical substances. It is precisely this which determines their bioaccessibility, bioaccumulation and toxicity. Recently, data about toxicity of nanoparticles for human and natural ecosystems have been accumulated. The results of a great deal of research affirm that they break the processes of photosynthesis, transpiration, mitosis, miosis and have a negative influence on colouring agents, proteins and carbohydrates. Under their action, physiological processes of plant growth and development are disturbed, which take place mainly in root system. Nanoparticles are characterized by high bioaccessibility for soil organisms, they are toxic to earthworms and microorganisms and they influence circulation of carbon and nitrogen. Aquatic organisms have been shown to have high sensitivity to nanoparticles; toxic effect has been registered for fish, daphnids, water plants and microorganisms. Taking into consideration the high level of potential danger of nanopreparations used in crop cultivation, special notice should be paid to the development of eco toxicological research. At present, nanoecotoxicological approaches to assessment of the danger of nanomaterials and nanoparticles are absent. Development of reports on elaboration of quantitative and qualitative methods of analysis, and methods of modeling and prognostication of risks is only at the initial stage. The objective of this review is attracting attention to solving the problem of nanoecotoxicology, nanoagrochemicals and nanopesticides, which needs consolidated efforts of scientists, governmental organizations and business and is an obligatory condition for preventing the negative impact of nanomaterials on humans and the environment.

References

Ali, M. A., Rehman, I., Iqbal, A., Din, S., Rao, A. Q., Latif, A., Samiullah, T. R., Azam, S., & Husnain, T. (2014). Nanotechnology: A new frontier in agriculture. Advancement in Life Sciences, 1, 129–138.


Araj, S-E. A., Salem, N. M., Ghabeish, I. H., & Awwad, A. M. (2015). Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). Journal of Nanomaterials, 2015, 758132.


Aruoja, V., Pokhrel, S., Sihtmäe, M., Mortimer, M., Mädler, L., & Kahru, A. (2015). Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environmental Science: Nano, 2, 630–644.


Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–664.


Bakhtiari, M., Moaveni, P., & Sani, B. (2015). The effect of iron nanoparticles spraying time and concentration on wheat. Biological Forum, 7, 679–683.


Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75, 850–857.


Böhme, S., Stärk, H.-J., Reemtsma, T., & Kühnel, D. (2015). Effect propagation after silver nanoparticle exposure in zebrafish (Danio rerio) embryos: A correlation to internal concentration and distribution patterns. Environmental Science: Nano, 2, 603–614.


Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., & Dutta, J. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1, 282–285.


Branton, D., Deame, D. W., Marziali, R. A., Bayley, H., Benner, S. A., Butler, T., Ventra, M. D., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X. S., Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., Riehn, R., Soni, G. V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., & Schloss, J. A. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 10, 1146–1153.


Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., & Ceccanti, B. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environmental Contamination and Toxicology, 94, 490–495.


Chatterjee, S., Sarkar, S., & Bhattacharya, S. (2014). Toxic metals and autophagy. Chemical Research in Toxicology, 27(11), 1887–1900.


Cherchi, C., & Gu, A. Z. (2010). Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science and Technology, 4, 8302–8307.


Clemente, Z., Grillo, R., Jonsson, M., Santos, N. Z., Feitosa, L. O., & Lima, R. (2014). Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides. Journal of Nanoscience and Nanotechnology, 14, 4911–4917.


Costa, P. M., & Fadeel, B. (2016). Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicology and Applied Pharmacology, 299, 101–111.


Croteau, M.-N., Misra, S. K., Luoma, S. N., & Valsami-Jones, E. (2014). Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures. Environmental Science and Technology, 48(18), 10929–10937.


Dale, A. L., Lowry, G. V., & Casman, E. A. (2015). Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model. Environmental Science and Technology, 49(12), 7285–7293.


Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84, 99–105.


Delfani, M., Firouzabadi, M. B., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis, 45, 530–540.


Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science and Technology, 47, 1082–1090.


El-Temsah, Y. S., & Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27, 42–49.


Feizi, H., Moghaddam, P. R., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146, 101–106.


Fitzpatrick, L. C., Goven, A. J., Muratti-Ortiz, J. F., & Venables, B. J. (1996). Comparative toxicity in earthworms Eisenia fetida and Lumbricus terrestris exposed to cadmium nitrate using artificial soil and filter paper protocols. Bulletin of Environmental Contamination and Toxicology, 1996, 57.


Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science and Technology, 47, 10645–10652.


Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29, 792–803.


Gondikas, A. P., Kammer, F. von der, Reed, R. B., Wagner, S., Ranville, J. F., & Hofmann, T. (2014). Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the Old Danube Recreational Lake. Environmental Science and Technology, 48(10), 5415–5422.


Goswami, A., Roy, I., Sengupta, S., & Debnath, N. (2010). Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 519, 1252–1257.


He, X., Aker, W. G., Fu, P. P., & Hwang, H.-M. (2015). Toxicity of engineered metal oxide nanomaterials mediated by nano-bio-eco-interactions: A review and perspective. Environmental Science: Nano, 2, 564–582.


Heckmann, L.-H., Hovgaard, M. B., Sutherland, D. S., Autrup, H., Besenbacher, F., & Scott-Fordsmand, J. J. (2011). Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology, 20(1), 226–233.


Holden, P. A., Gardea-Torresdey, J. L., Klaessig, F., Turco, R. F., Mortimer, M., Hund-Rinke, K., Cohen Hubal, E. A., Avery, D., Barceló, D., Behra, R., Cohen, Y., Deydier-Stephan, L., Ferguson, P. L., Fernandes, T. F., Harthorn, B. H., Henderson, W. M., Hoke, R. A., Hristozov, D., Johnston, J. M., Kane, A. B., Kapustka, L., Keller, A. A., Lenihan, H. S., Lovell, W., Murphy, C. J., Nisbet, R. M., Petersen, E. J., Salinas, E. R., Scheringer, M., Sharma, M., Speed, D. E., Sultan, Y., Westerhoff, P., White, J. C., Wiesner, M. R., Wong, E. M., Xing, B., Horan, M. S., Godwin, H. A., & Nel, A. E. (2016). Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environmental Science and Technology, 50(12), 6124–6145.


Hong, J., Peralta-Videa, J. R., Rico, C., Sahi, S., Viveros, M. N., Bartonjo, J., Zhao, L., & Gardea-Torresdey, J. L. (2014). Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science and Technology, 48(8), 4376–4385.


Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J., & Yang, L. Y. (2010). Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42(4), 586–591.


Hu, X., Li, D., Gao, Y., Mu, L., & Zhou, Q. (2016). Knowledge gaps between nanotoxicological research and nanomaterial safety. Environment International, 94, 8–23.


Ibrahim, A. M. A., & Ali, A. M. (2018). Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 21(4), 1373–1378.


Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2016). Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25(3), 443–447.


Jefferson, D. A. (2000). The surface activity of ultrafine particles. Philosophical Transactions of the Royal Society, A, 358, 2683–2692.


Jha, M. N., & Prasad, A. N. (2006). Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World Journal of Microbiology and Biotechnology, 22, 73–79.


Judy, J. D., McNear, D. H., Chen, C., Lewis, R. W., Tsyusko, O. V., Bertsch, P. M., Rao, W., Stegemeier, J., Lowry, G. V., McGrath, S. P., Durenkamp, M., & Unrine, J. M. (2015). Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environmental Science and Technology, 49(14), 8751–8758.


Kantrao, S., Ravindra, M. A., Akbar, S. M. D., Jayanthi, K., & Venkataraman, A. (2017). Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): Interaction with midgut protease. Journal of Asia-Pacific Entomology, 20(2), 583–589.


Karimi, N., Minaei, S., Almassi, M., & Shahverdi, A. R. (2012). Application of silver nano-particles for protection of seeds in different soils. African Journal of Agricultural Research, 7, 863–869.


Kim, S. W., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Jung, M., Sim, S. J., Kim, H. S., Chang, S. J., Kim, J. K., & Lee, Y. S. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology, 19, 760–764.


Kumari, M., Mukherjee, A., & Chadrasekaran, N. (2009). Genotoxicity of silver nanoparticle in Allium cepa. Science of the Total Environment, 407, 5243–5246.


Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S., & Khodakovskaya, M. V. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials and Interfaces, 5, 7965–7973.


Lahive, E., Jurkschat, K., Shaw, B. J., Handy, R. D., Spurgeon, D. J., & Svendsen, C. (2014). Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: Subtle effects. Environmental Chemistry, 2014, 11, 268–278.


Lavelle, C. M., Bisesi, J. H., Hahn, M. A., Kroll, K. J., Sabo-Attwood, T., & Denslow, N. D. (2015). Oral bioavailability and sex specific tissue partitioning of quantum dots in fathead minnows, Pimephales promelas. Environmental Science: Nano, 2, 583–593.


Lee, W. M., An, Y. J., Yoon, H., & Kwbon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestrivum): Plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27, 1915–1921.


Li, L. Z., Zhou, D. M., Peijnenburg, W. J., van Gestel, C. A., Jin, S. Y., Wang, Y. J., & Wang, P. (2011). Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environment International, 37(6), 1098–1104.


Li, X., Schirmer, K., Bernard, L., Sigg, L., Pillai, S., & Behra, R. (2015). Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environmental Science: Nano, 2, 594–602.


Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.


Lopez-Moreno, M. L., De La Rosa, G., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. Journal of Agricultural and Food Chemistry, 58, 3689–3693.


Makarenko, N., Rudnytska, L., & Bondar, V. (2016). Peculiarities of ecotoxicological assessment nanoagrochemicals used in crop production. Annals of Agrarian Science, 14(2), 35–41.


Martins, C. H. Z., De Sousa, M., Fonseca, L. C., Martinez, D. S. T., & Alves, O. L. (2018). Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: Material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere, 215, 766–774.


Mattiello, A., Filippi, A., Pošćić, F., Musetti, R., Salvatici, M., Giordano, C., Vischi, M., Bertolini, A., & Marchiol, L. (2015). Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. Exposed to CeO2 and TiO2 nanoparticles. Frontiers in Plant Science, 6, 1043.


McKee, M. S., & Filser, J. (2016). Impacts of metal-based engineered nanomaterials on soil communities. Environmental Science: Nano, 3, 506–533.


Morales, M. I., Rico, C. M., Hernandez-Viezcas, J. A., Nunez, J. E., Barrios, A. C., Tafoya, A., Flores-Marges, J. P., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. Journal of Agricultural and Food Chemistry, 61, 6224–6230.


Mudunkotuwa, I. A., Minshid, A. A., & Grassian, V. H. (2014). ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst, 139, 870–881.


Mukherjee, A., Sun, Y., Morelius, E., Tamez, C., Bandyopadhyay, S., Niu, G., White, J. C., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): A life cycle study. Frontiers in Plant Science, 6, 1242.


Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163.


Nelson, M., & White, J. C. (2016). Editorial: Nanotoxicology and environmental risk assessment of engineered nanomaterials (ENMs) in plants. Frontiers in Plant Science, 7, 1370.


OECD test guidelines for the chemicals. OECD guidelines for the testing of chemicals, Section 3.


Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.


Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevecna, T., & Zboril, R. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry, B, 110, 16248–16253.


Peteu, S. F., Oancea, F., Sicuia, O. A., Constantinescu, F., & Dinu, S. (2010). Responsive polymers for crop protection. Polymer, 2, 229–251.


Pradhan, S., Patra, P., Das, S., Chandra, S., Mitra, S., & Dey, K. K., Akbar, S., Palit, P., & Goswami, A. (2013). Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular biochemical, and biophysical study. Environmental Science and Technology, 47, 13122–13131.


Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35, 905–927.


Puoci, F., Lemma, F., Spizzirri, U. G., Cirillo, G., Curcio, M., & Picci, N. (2008). Polymer in agriculture: A review. American Journal of Agricultural and Biological Sciences, 3, 299–314.


Qiu, T. A., Bozich, J. S., Lohse, S. E., Vartanian, A. M., Jacob, L. M., Meyer, B. M., Gunsolus, I. L., Niemuth, N. J., Murphy, C. J., Haynes, C. L., & Klaper, R. D. (2015). Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environmental Science: Nano, 2, 615–629.


Quik, J. T. K., Vonk, J. A., Hansen, S. F., Baun, A., & Van De Meent, D. (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environment International, 37(6), 1068–1077.


Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agricaltural Research, 2, 48–57.


Ray, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and environmental risks of nanomaterials: Challenges and future needs. Journal of Environmental Science and Health, Part C, 27(1), 1–35.


Rösslein, M., Elliott, J. T., Salit, M., Petersen, E. J., Hirsch, C., Krug, H. F., & Wick, P. (2015). Use of cause-and-effect analysis to design a high-quality. Chemical Research in Toxicology, 28(1), 21–30.


Santoso, D., Lefroy, R. D. B., & Blair, G. J. (1995). Sulfur and phosphorus dynamics in an acid soil/crop system. Australian Journal of Soil Research, 33, 113–124.


Schirmer, K., & Auffan, M. (2015). Nanotoxicology in the environment. Environmental Science: Nano, 2, 561–563.


Schlich, K., Klawonn, T., Terytze, K., & Hund-Rinke, K. (2013). Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environmental Toxicology and Chemistry, 32(1), 181–188.


Shaw, B. J., & Handy, R. D. (2011). Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environment International, 37(6), 1083–1097.


Shukla, S. K., Kumar, R., Mishra, R. K., Pandey, A., Pathak, A., Zaidi, M., Srivastava, S. K., & Dikshit, A. (2015). Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): A step toward development of nano-biofertilizers. Nano Reviews and Experiments, 4, 439–448.


Shyla, K. K., Natarajan, N., & Nakkeeran, S. (2014). Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina. Journal of Mycology and Plant Pathology, 44, 268–273.


Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1), 13–17.


Singh Duhan, J., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Report, 15, 11–23.


Som, C., Wick, P., Krug, H., & Nowack, B. (2011). Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environment International, 37(6), 1131–1142.


Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43, 9473–9479.


Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2014). Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology, 8, 133–137.


Tripathi, S., & Sarkar, S. (2014). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5, 609–616.


Turco, R. F., Bischoff, M., Tong, Z. H., & Nies, L. (2011). Environmental implications of nanomaterials: Are we studying the right thing? Current Opinion in Biotechnology, 22(4), 527–532.


Velmurugan, N., Gnana Kumar, G., & Sub Han, S. (2009). Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iranian Polymer Journal, 18, 383–392.


Viswanath, B., & Kim, S. (2017). Influence of nanotoxicity on human health and environment: The alternative strategies. Reviews of Environmental Contamination and Toxicology, 242, 61–104.


Wezel, A. P. van, Morinière, V., Emke, E., Laak, T., & Hogenboom, A. C. (2011). Quantifying summed fullerene nC60 and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples. Environment International, 37(6), 1063–1067.


Wu, L., & Liu, M. (2008). Preparation and properties of chitosan coated NPK compound fertilizer with controlled release and water-retention. Carbohydrate Polymers, 72, 240–247.


Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.


Yang, F. L., Li, S. G., Zhu, F., & Lei, C. L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry, 57, 10156–10162.


Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158, 122–132.


Yasur, J., & Pathipati, U. R. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere, 124, 92–102.


Abbas, F., Jan, Т., Iqbal, J., & Haider, M. S. (2015). Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Current Applied Physics, 15(11), 1428–1434.


Babu, K. S., Anandkumar, M., Tsai, T. Y., Kao, T. H., Inbaraj, B. S., & Chen, B. H. (2014). Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. International Journal Nanomedicine, 9, 5515–5531.


Bozhkov, A. I., Goltvyanskij, A. V., & Rostama, S. (2010). A primary reaction to stress induced by high copper ion concentration. Algologia, 20(2), 151–166.


Celardo, I., Pedersen, J. Z., Traversa, E., & Ghibelli, L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 3(4), 1411–1420.


Charbgoo, F., Ahmad, M. B., & Darroudi, M. (2017). Cerium oxide nanoparticles: Green synthesis and biological applications. International Journal Nanomedicine, 12, 1401–1413.


Chen, H., & Jiang, J. G. (2009). Osmotic responses of Dunaliella to the changes of salinity. Journal of Cellular Physiology, 219, 251–258.


Cheng, L., Jiang, X., Wang, J., Chen, C., & Liu, R. S. (2013). Nano-bio effects: Interaction of nanomaterials with cells. Nanoscale, 5(9), 3547–3569.


Coleman, R. A. (2011). Efficacy and safety of new medicines: A human focus. Cell Tissue Bank, 12(1), 3–5.


Doak, S. H., Manshian, B., Jenkins, G. J. S., & Singh, N. (2012). In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutation Research, 745, 104–111.


Estevez, A. Y., & Erlichman, J. C. (2014). The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine, 9, 1437–1440.


Fontes, J. A., Barin, J. G., Talor, M. V., Stickel, N., Schaub, J., Rose, N. R., & Cihakova, D. (2017). Complete Freund’s adjuvant induces experimental autoimmune myocarditis by enhancing IL-6 production during initiation of the immune response. Immunity, Inflammation, Disease, 5(2), 163–176.


Garcia-Saucedo, C., Field, J. A., Otero-Gonzalez, L., & Sierra-Álvarez, R. (2011). Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. Journal of Hazardous Materials, 192, 1572–1579.


Hexin, L., Xianggan, C., Fazli, W., Feng, X., Cheng, Z., & Shiru, J. (2016). Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation. PLoS One, 11(3), e0152226.


Hoet, P. H., Bruske-Hohlfeld, I., & Salata, O. V. (2004). Nanoparticles – known and unknown health risks. Journal Nanotechnology, 2(12), 1–15.


Izu, N., Matsubara, I., Itoh, T., Akamatsu, T., & Shin, W. (2013). CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles. Sensors (Basel), 13(3), 3252–3261.


Jurado-Sanchez, B. (2018). Microscale and nanoscale biosensors. Biosensors, 8(3), 66.


Klimova, E. M., Bozhkov, A. I., Boyko, V. V., Drozdova, L. A., Lavinskaya, Е. V., & Skok, M. V. (2016). Endogenic cytotoxic compounds and formation of the clinic forms of myasthenia. Translational Biomedicine, 7(3), 1–13.


Kurvet, I., Juganson, K., Vija, H., Sihtmae, M., Blinova, I., Syvertsen-Wiig., G., & Kahru, A. (2017). Toxicity of nine (doped) rare earth metal oxides and respective individual metals to aquatic microorganisms Vibrio fischeri and Tetrahymena thermophile. Materials (Basel), 10(7), 754.


Masjuk, N. P. (1973). Morfologija, sistematika, ekologija, geograficheskoe rasprostranenie roda Dunaliella Teod. i perspektivy ego prakticheskogo ispol’zovanija [Morphology, systematics, ecology, geographical distribution of the genus Dunaliella Teod. and prospects for its practical use]. Naukova Dumka, Kiev (in Russian).


Men’shikov, V. V. (1987). Laboratornye metody issledovanija v klinike [Laboratory research methods in the clinic]. Medicina, Moscow (in Russian).


Minchenko, D. O., Spivak, M. Y., Herasymenko, R. M., Ivanov, V. K., Tretyakov, Y. D., & Minchenko, О. Н. (2013). Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes. Materialwissenschaft und Werkstofftechnik, 44(2–3), 156–160.


Mohs, R. C., & Greig, N. H. (2017). Drug discovery and development: Role of basic biological research. Alzheimers Dement (N Y), 3(4), 651–657.


Nourmohammadi, E., Khoshdel-Sarkazi, H., Nedaeinia, R., Sadeghnia, H. R., Hasanzadeh, L., Darroudi, M., & Kazemi, O. R. (2019). Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. Journal of Cellular Physiology, 234(4), 4987–4996.


Prevo, B., Scholey, J. M., & Peterman, E. J. G. (2017). Intraflagellar transport: Mechanisms of motor action, cooperation, and cargo delivery. The FEBS Journal, 284(18), 2905–2931.


Radosevic, K., Radosevic, K., van Leeuwen, A. M. T., Segers-Nolten, G. M. J., Figdor, C., de Grooth, B. G., & Greve, J. (1994). Changes in actin organization during the cytotoxic process. Cytometry, 15(4), 320–326.


Reilein, A. R., Rogers, S. L., Tuma, M. C., & Gelfand, V. I. (2001). Regulation of molecular motor proteins. International Review Cytology, 204, 179–238.


Rostama, S., Bozhkov, A. I., & Goltvyanskiy, A. V. (2012). Effect of copper, lead and cadmium ions on the induction of cells of Dunaliella viridis (Chlorophyta) aggregation. Algologia, 22(1), 30–43.


Sahu, D., Kannan, G. M., Tailang, M., & Vijayaraghavan, R. (2016). In vitro cytotoxicity of nanoparticles: A comparison between particle size and cell type. Journal of Nanoscience, 2016, 1–9.


Schroer, T. A. (1994). Structure, function and regulation of cytoplasmic dynein. Current Opinion in Cell Biology, 6, 69.


Schubert, D., Dargusch, R., Raitano, J., & Chan, S. W. (2006). Cerium and yttrium oxide nanoparticles are neuroprotective. Biochemical and Biophysical Research Communication, 342(1), 86–91.


Sharifi, S., Behzadi, S., Laurent, S., Forrest, M. L., Stroeve, P., & Mahmoudi, M. (2012). Toxicity of nanomaterials. Chemical Society Reviews, 41(6), 2323–2343.


Shcherbakov, A. B., Zholobak, N. M., Baranchikov, A. E., Ryabova, A. V., & Ivanov, V. K. (2015). Cerium fluoride nanoparticles protect cells against oxidative stress. Materials Science and Engineering C, 50, 151–159.


Shi, K., Cui, L., Jiang, H., Yang, L., & Xue, L. (2013). Characterization of the microtubule-binding activity of kinesin-like calmodulin binding protein from Dunaliella salina. Research in Microbiology, 164(10), 1028–1034.


Tomlenovich, L., & Show, C. (2011). Aluminum adjuvants in vaccines. Current Medicinal Chemistry, 18, 2630–2637.


Vale, R. D., & Fletterick, R. J. (1997). The design plan of kinesin motors. Annual Review of Cell and Developmental Biology, 13, 745–777.

Published
2019-08-22
Section
Articles