Cuticular wax composition of mature leaves of species and hybrids of the genus Prunus differing in resistance to clasterosporium disease

  • N. O. Khromykh Oles Honchar Dnipro National University
  • Y. V. Lykholat Oles Honchar Dnipro National University
  • A. A. Anishchenko Oles Honchar Dnipro National University
  • O. O. Didur Oles Honchar Dnipro National University
  • A. A. Gaponov Oles Honchar Dnipro National University
  • A. M. Kabar Oles Honchar Dnipro National University
  • T. Y. Lykholat Oles Honchar Dnipro National University
Keywords: peach; almond; epicuticular wax; n-alkane; aldehyde; fungal damage; resistance.


The interaction of a host plant with pathogen implies an extremely complex process involving the outer waxy layer of the cuticle, cutin, cell membrane, and intracellular structures. However, the initial contact between plants and pathogens takes place in cuticular waxes covering the surface of leaves, stems and fruits. Despite many findings on the role of plant epicuticular waxes, there is a gap in the understanding of the relationship between individual compounds and their functions. The pathogenic fungus Clasterosporium carpohilum (Lev.) Aderh. parasitizes the tissues of many stone fruit trees, damaging leaf and fruit surface. The aim of this work was to find out if the quantity and composition of leaf epicuticular wax could be responsible for the resistance to clasterosporium disease. The study of differences of plants in fungal resistance was carried out on species and hybrids of the genus Prunus from the collection of the Botanical Garden of Oles Honchar Dnipro National University (Dnipro city, Ukraine). The chloroform extracts of epicuticular waxes from the surface of mature leaves were analyzed by gas chromatography connected to mass-spectrometry. GC/MS assay was performed using Shimadzu GCMS-QP 2020 El equipped with capillary column (5% diphenyl/95% dimethyl polysiloxane), and helium as a carrier gas. Mass Spectrum Library 2014 for GSMS was used to identify the separated compounds of the wax extracts. The maximum total wax amount on the adaxial and abaxial leaf surface of hybrid 2 was twice the minimum wax accumulation for hybrid 4. Overall, 20 individual compounds belonging to six hydrocarbon classes were identified. Leaf epicuticular wax composition both in Prunus persica (L.) Batsch and P. dulcis (Mill.) D. A. Webb, and hybrids was dominated by long-chain n-alkanes with even carbon number (77.6–90.9% of total sum). The alkenes’ class was represented only by 17-pentatriacontene detected in the wax of both Prunus species. Octadecanaldehyde was found in epicuticular wax of P. dulcis while absent in wax of the more resistant species P. persica. Prime alcohols 1-tetradecanol and 1-hexacosanol were detected in leaf waxes of hybrid 4 and P. dulcis respectively. The ester class contained seven compounds found in leaf epicuticular waxes of both plant species and all hybrid forms. The identification of phthalic acid esters in leaf wax extracts was unexpected, and the phthalates’ origin is discussed. Strong positive correlation between leaf damage and tetrapentacontane content in epicuticular waxes could presumably be the result of infection-induced metabolism reprogramming in epidermal cells of infected leaves.


Agudelo-Romero, P., Erban, A., Rego, C., Carbonell-Bejerano, P., Nascimento, T., Sousa, L., Martínez-Zapater, J. M., Kopka, J., & Fortes, A. M. (2015). Transcriptome and metabolome reprogramming in Vitis vinifera cv. trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 66, 1769–1785.

Azmy, A., & Korra, A. (2010). Management of shot-hole disease of stone fruit trees caused by Stigmina carpophila. Journal of Plant Protection and Pathology, 1(12), 973–989.

Babu, B., & Wu, J.-T. (2010). Production of phthalate esters by nuisance freshwater algae and cyanobacteria. Science of the Total Environment, 408(21), 4969–4975.

Baranovski, B., Khromykh, N., Karmyzova, L., Ivanko, I., & Lykholat, Y. (2016). Anyalysis of the alien flora of Dnipropetrovsk province. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 419–429.

Batovska, D. I., Todorova, I. T., & Popov, S. S. (2009). Seasonal variations in the leaf surface composition of field grown grapevine plants. Journal of the Serbian Chemical Society, 74, 1229–1240.

Bohinc, T., Markovic, D., & Trdan, S. (2014). Leaf epicuticular wax as a factor of antixenotic resistance of cabbage to cabbage flea beetles and cabbage stink bugs attack. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 64(6), 493–500.

Bourgault, R., Matschi, S., Vasquez, M., Qiao, P., Sonntag, A., Charlebois, C., Mohammadi, M., Scanlon, M. J., Smith, L. G., & Molina, I. (2020). Constructing functional cuticles: Analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Annals of Botany, 125, 79–91.

Braccini, C. L., Vega, A. S., Aroz, M. V. C., Teal, P. E., Cerrillo, T., Zavala, J. A., & Fernandez, P. C. (2015). Both volatiles and cuticular plant compounds determine oviposition of the willow sawfly Nematus oligospilus on leaves of Salix spp. (Salicaceae). Journal of Chemical Ecology, 41, 985–996.

Buschhaus, C., Herz, H., & Jetter, R. (2007). Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany, 100(6), 1557–1564.

Buschhaus, C., & Jetter, R. (2012). Composition and physiological function of the wax layers coating Arabidopsis leaves: b-Amyrin negatively affects the intracuticular water barrier. Plant Physiology, 160, 1120–1129.

Calvo-Garrido, C., Elmer, P. A., Parry, F. J., Viñas, I., Usall, J., Torres, R., Agnew, R. H., & Teixidó, N. (2014). Mode of action of a fatty acid-based natural product to control Botrytis cinerea in grapes. Journal of Applied Microbiology, 116, 967–979.

Dar, R. A., Rai, A. N., & Shiekh, I. A. (2017). Stigmina carpophila detected on Prunus armeniaca and Prunus persica in India. Australasian Plant Disease Notes, 12, 19.

Ding, S., Zhang, J., Yang, L., Wang, X., Fu, F., Wang, R., Zhang, Q., & Shan, Y. (2020). Changes in cuticle components and morphology of 'Satsuma' mandarin (Citrus unshiu) during ambient storage and their potential role on Penicillium digitatum infection. Molecules, 25(2), 412.

Feng, J., Wang, F., Liu, G. S., Greenshields, D., Shen, W. Y., Kaminskyj, S., Hughes, G. R., Peng, Y. L., Selvaraj, G., Zou, J. T., & Wei, Y. (2009). Analysis of a Blumeria graminis-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development. Molecular Plant-Microbe Interactions, 22, 1601–1610.

Fernández, V., Guzmán-Delgado, P., Graça, J., Santos, S., & Gil, L. (2016). Cuticle structure in relation to chemical composition: Re-assessing the prevailing model. Frontiers in Plant Science, 7, 427.

Gniwotta, F., Vogg, G., Gartmann, V., Carver, T. L. W., Riederer, M., & Jetter, R. (2005). What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Plant Physiology, 139, 519–531.

Hansjakob, A., Bischof, S., Bringmann, G., Riederer, M., & Hildebrandt, U. (2010). Very long chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose and chain length dependent manner. New Phytologist, 188, 1039–1054.

Hansjakob, A., Riederer, M., & Hildebrandt, U. (2011). Wax matters: Absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathology, 60, 1151–1161.

Jetter, R., & Riederer, M. (2016). Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: Water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiology, 170, 921–934.

Khan, M. A. U., Shahid, A. A., Rao, A. Q., Bajwa, K. S., Muzaffar, A., Rehman Samiullah, T., & Husnain, T. (2015). Molecular and biochemical characterization of cotton epicuticular wax in defense against cotton leaf curl disease. Iranian Journal of Biotechnology, 13(4), 3–9.

Kim, K. S., Park, S. H., & Jenks, M. A. (2007). Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Journal of Plant Physiology, 164(9), 1134–1143.

Klavins, L., & Klavins, M. (2020). Cuticular wax composition of wild and cultivated Northern Berries. Foods, 9(5), 587.

Koch, K., & Ensikat, H. J. (2008). The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron, 39(7), 759–772.

Łaźniewska, J., Macioszek, V. K., & Kononowicz, A. K. (2012). Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24–30.

Lee, S. B., & Suh, M. C. (2015). Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports, 34(4), 557–572.

Lykholat, Y. V., Khromykh, N. O., Pirko, Y. V., Alexeyeva, A. A., Pastukhova, N. L., & Blume, Y. B. (2018). Epicuticular wax composition of leaves of Tilia L. trees as a marker of adaptation to the climatic conditions of the Steppe Dnieper. Cytology and Genetics, 52(5), 323–330.

Maiti, R., Rodriguez, H. G., Gonzalez, E. A., Kumari, A., & Sarkar, N. C. (2016). Variability in epicuticular wax in 35 woody plants in Linares, Northeast Mexico. Forest Research, 5, 162.

Medina, E., Aguiar, G., Gomez, M., Aranda, J., Medina, J. D., & Winter, K. (2006). Taxonomic significance of the epicuticular wax composition in species of the genus Clusia from Panama. Biochemical Systematics and Ecology, 34, 319–326.

Nanni, V., Zanetti, M., Bellucci, M., Moser, C., Bertolini, P., Guella G., Dalla Serra, M., & Baraldi, E. (2013). The peach (Prunus persica) defensin PpDFN1 displays antifungal activity through specific interactions with the membrane lipids. Plant Pathology, 62(2), 393–403.

Nazarenko, M., Lykholat, Y., Grigoryuk, I., & Khromykh, N. (2018). Optimal doses and concentrations of mutagens for winter wheat breeding purposes. Part I. Grain productivity. Journal of Central European Agriculture, 19(1), 194–205.

Nazarenko, M., Khromykh, N., Matyukha, V., Lykholat, Y., Bezus, R., & Shupranova, L. (2019). Chemical plant protection agents change the yield structure and the grain quality of winter wheat (Triticum aestivum L.). Bulletin of Transilvania University of Brasov – series II – Forestry, Wood Industry, Agricultural, Food Engineering, 12(2), 97–106.

Niks, R. E., & Rubiales, D. (2002). Potentially durable resistance mechanisms in plants to specialized fungal pathogens. Euphytica, 124, 201–216.

Palchykov, V., Khromykh, N., Lykholat, Y., Mykolenko, S., & Lykholat, T. (2019). Synthesis and plant growth regulatory activity of 3-sulfolene derivatives. Chemistry and Chemical Technology, 13(4), 424–428.

Philip, D., Kaleena, P. K., & Valivittan, K. (2011). GC-MS analysis and antibacterial activity of chromatographically separated pure fractions of leaves of Sansevieria roxburghiana. Asian Journal of Pharmaceutical and Clinical Research, 4(4), 130–133.

Rebora, M., Salerno, G., Piersanti, S., Gorb, E., & Gorb, S. (2020). Role of fruit epicuticular waxes in preventing Bactrocera oleae (Diptera: Tephritidae) attachment in different cultivars of Olea europaea. Insects, 11, 189.

Ringelmann, A., Riedel, M., Riederer, M., & Hildebrandt, U. (2009). Two sides of a leaf blade: Blumeria graminis needs chemical cues in cuticular waxes of Lolium perenne for germination and differentiation. Planta, 230, 95–105.

Shafaghat, A., Salimi, F., & Amani-Hooshyar, V. (2012). Phytochemical and antimicrobial activities of Lavandula officinalis leaves and stems against some pathogenic microorganisms. Journal of Medicinal Plants Research, 6(3), 455–460.

Sharma, P., Kothari, S. L., Rathore, M., & Gour, V. (2018). Properties, variations, roles, and potential applications of epicuticular wax: A review. Turkish Journal of Botany, 42, 135–149.

Shcherbyna, R. O., Danilchenko, D. M., Parchenko, V. V., Panasenko, O. I., Knysh, E. H., Khromykh, N. O., & Lykholat, Y. V. (2017). Studying of 2-((5-R-4-R1-4H-1,2,4-triazole-3-yl)thio)acetic acid salts influence on growth and progress of blackberries (KIOWA Variety) propagules. Research Journal of Pharmaceutical, Biological and Chemical Science, 8, 975–979.

Sivankalyani, V., Feygenberg, O., Diskin, S., Wright, B. S., & Alkan, N. (2016). Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biology and Technology, 111, 132–139.

Tian, C., Ni, J., Chang, F., Liu, S., Nan, X., Sun, W., Xie, Y., Guo, Y., Ma, Y., Yang, Z., Dang, C., Huang, Y., Tian, Z., & Wang, Y. (2016.) Bio-source of di-n-butyl phthalate production by filamentous fungi. Scientific Reports, 6, 19791.

Trivedi, P., Nguyen, N., Hykkerud, A. L., Häggman, H., Martinussen, I., Jaakola, L., & Karppinen, K. (2019). Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Frontiers in Plant Science, 10, 431.

Tsuba, M., Katagiri, C., Takeuchi, Y., Takada, Y., & Yamaoka, N. (2002). Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis. Physiological and Molecular Plant Pathology, 60, 51–57.

Wen, M., Buschhaus, C., & Jetter, R. (2006). Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochemistry, 67(16), 1808–1817.

Van Maarseveen, C., & Jetter, R. (2009). Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Phytochemistry, 70(7), 899–906.

Yeats, T. H., & Rose, J. K. C. (2013). The formation and function of plant cuticles. Plant Physiology, 163, 5–20.

Zabka, V., Stangl, M., Bringmann, G., Vogg, G., Riederer, M., & Hildebrandt, U. (2008). Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytologist, 177(1), 251–263.

Zacchino, S. A., Butassi, E., Liberto, M. D., Raimondi, M., Postigo, A., & Sortino, M. (2017). Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 37, 27–48.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., Kabar, A. M., & Brygadyrenko, V. V. (2020). Anti-bacterial and fungicidal effect of ethanol extracts from Juniperus sabina, Chamaecyparis lawsoniana, Pseudotsuga menziesii and Cephalotaxus harringtonia. Regulatory Mechanisms in Biosystems, 11(1), 105–109.