Content of sodium ions in the tissues of Crimean flora halophytes depending on the varying degree of salinity


  • S. N. Kabuzenko V.I. Vernadsky Taurida National University
  • A. V. Omelchenko V.I. Vernadsky Taurida National University
  • L. N. Mikhalskaya Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
  • V. V. Schwartau Institute of Plant Physiology and Genetics of NAS of Ukraine
Keywords: Suaeda prostrata, Salicornia perennans, Artemisia santonica, halophytes, distribution of ions Na , adaptation to salinity

Abstract

The quantitative content and distribution in organs and tissue compartments of Na+ ions in halophytes Suaeda prostrata Pall., Salicornia perennans Willd., Artemisia santonica L. growing in the areas with chloride-sulfate type of salinization of soil in the vicinity of the Sasyk salt lake (Northwest Crimea) has been determined. It was found that for S. perennans and S. prostrata euhalophytes the strategy of translocation of Na+ ions to the organs of the aerial part with increasing NaCl concentration in the medium was typical. In this case, the content of Na+ ions in the cell sap of the above-ground parts of plants significantly increases which is more pronounced in S. perennans. Increasing concentrations of NaCl in the medium contribute to 0.50–0.75% improvement in plant growth indicators and protein content increase in vegetative organs. A positive correlation between the content of Na+ and biomass accumulation in organs of euhalophytes is shown. Glycohalophyte A. santonica is characterized by localization of Na+ ions predominantly in the root tissues. The highest content of Na+ ions in the above-ground organs of euhalophytes growing in natural conditions was observed in the phase of active vegetative growth and budding, therefore, it is recommended to mow their aerial organs at these stages of ontogenesis for the purpose of soil desalinization. It is concluded that absorption of Na+, as a strategy of adaptation of halophytes to salinity, not only helps to reduce water potential in cells and plants in general, but also activates anabolism, which directly correlates with their salt tolerance.

References

Balnokin, Y.V., Kotov, A.A., Myasoedov, N.A., Haylova, G.F., Kurkova, E.B., Lunkov, R.V., Kotova, L.M., 2005. Uchastie dalnego transporta Na+ v podderzhanii gradienta vodnogo potentsiala v sisteme sreda–koren–list u galofitov Suaeda altissima. Fiziologiya Rasteniy 52, 549–557 (in Russian).
Balnokin, Y.V., Myasoedov, N.A., Shamsutdinov, Z.S., Shamsutdinov, N.Z., 2005. Rol Na+ i К+ v podderzhanii ovodnennosti tkaney organov u galofitov sem. Chenopodiaceae razlichnyih ekologicheskih grupp. Fiziologiya Rasteniy 52, 882–890 (in Russian).
Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431–434. >> doi:10.1016/S0955-0674(00)00112-5
Blumwald, E., Aharon, G.S., Apse, M.P., 2000. Sodium transport in plant cells. Biochim. Biophys. Acta 1465, 140–151. >> doi:10.1016/S0005-2736(00)00135-8
Davenport, R.J., Tester, M.A., 2000. Weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. 122, 823–834. >> doi:10.1104/pp.122.3.823
Demidchik, V., Davenport, R.J., Tester, M., 2002. Nonselective cation channel. Ann. Rev. Plant Biol. 53, 67–107. >> doi:10.1146/annurev.arplant.53.091901.161540
Du Pont, F.M., 1992. Salt-induced changes in ion transport: Regulation of primary pumps and secondary transporters. In: Cooke, D.T., Clarkson, D.T., eds. Transport and receptor proteins of plant membranes. Plenum Press, New York. P. 91–100.
Gasanov, G.N., Musaev, M.R., Abdurahmanov, G.M., Kurbanov, S.A., Adzhiev, A.M., 2004. Fitomelioratsiya zasolennyih pochv Zapadnogo Prikaspiya. Nauka, Moscow (in Russian).
Hasegawa, P.M., Bressan, R.A., Zhu, J.-K. Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499. >> doi:10.1146/annurev.arplant.51.1.463
Kabuzenko, S.N., 1997. Vliyanie zasoleniya i ekzogennyih fitogormonov na rost i nekotoryie fiziologo-biohimicheskie funktsii rasteniy na etapah ontogeneza: Avtoref. Diss. ... dokt. biol. nauk. Kyiv (in Russian).
Kabuzenko, S.N., Kuznetsova, N.N., Omelchenko, A.V., 2007. Vozmozhnyie mehanizmyi aktivatsii protonnoy ATFazyi v rasteniyah kukuruzyi pri solevom stresse. Uchenyie Zapiski Tavricheskogo Natsionalnogo Universiteta Imeni V.I. Vernadskogo. Ser. Biologiya, Himiya 20(59), 26–32.
Kabuzenko, S.N., Omelchenko, A.V., Kurtmullaeva, Z.E., 2005. Adaptatsiya rasteniy Sueda prostrata Pall. k hloridnomu zasoleniyu razlichnoy stepeni. Ekosistemyi Kryima, ih Optimizatsiya i Ohrana 15, 39–43 (in Russian).
Kabuzenko, S.N., Omelchenko, A.V., Zhaldak, S.N., 2007. Soderzhanie Na+ v organah galofitov v zavisimosti ot fenologicheskih faz razvitiya rasteniy i zasolennosti pochvyi. Ekosistemyi Kryima, ih Optimizatsiya i Ohrana 17, 169–175 (in Russian).
Lowry, O.A., Rosenbrough, N.J., Farr, A.L., Randall, R.I., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.
Lunkov, R.V., Andreev, I.M., Myasoedov, N.A., Haylova, G.F., Kurkova, E.B., Balnokin, Y.V., 2005. Funktsionalnaya identifikatsiya Н+-ATFazyi i Na+/H+-antiportera v plazmaticheskoy membrane, vyidelennoy iz kletok kornya solenakaplivayuschego galofita Suaeda altissima. Fiziologiya Rasteniy 52, 717–725.
Maathuis, F.J.M., Amtmann, A., 1999. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133. >> doi:10.1006/anbo.1999.0912
Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M., 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109, 735–742.
Omelchenko, A.V., 2012. Nakoplenie i lokalizatsiya ionov natriya v tkanyah glikofitov i galofitov Kryima pri adaptatsii k zasoleniyu: Avtoref. diss. ... kand. biol. nauk. Institut Fiziologii Rasteniy i Genetiki, Kyiv (in Russian).
Repetskaya, A.I., 1999. Nekotoryie aspektyi populyatsionnoy biologii odnoletnih vidov Chenopodiaceae v galofitnyih soobschestvah Kryima. Botanicheskiy Zhurnal 84, 75–81.
Rus, A., Lee, B., Muñoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J., Bressan, R., Hasegava, P.M., 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 136, 2500–2511. >> doi:10.1104/pp.104.042234
Shamsutdinov, N.Z. Shamsutdinov, Z.S., 2008. Bioticheskaya melioratsiya zasolenno-solontsovyih pochv s ispolzovaniem galofitov (obzor zarubezhnogo opyita). Aridnyie Ekosistemy 14, 18–33 (in Russian).
Stepanchenko, N.S., Novikova, G.V., Moshkov, I.E., 2011. Kolichestvennoe opredelenie soderzhanie belka. Fiziologiya Rasteniy 5, 624–630 (in Russian).
Ungar, I.A., 1998. Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Bot. Rev. 64, 176–199. >> doi:10.1007/BF02856582
Veselov, A.P., Kurganova, L.N., Lihachev, A.V., Sushkova, U.A., 2002. Vozmozhnoe regulyatornoe vliyanie perekisnogo okisleniya lipidov na aktivnost Н+-ATFazyi plazmalemmyi v usloviyah stressa. Fiziologiya Rasteniy 49, 385–389 (in Russian).
Veselov, D.S., Markova, I.V., Kudoyarova, G.R., 2007. Reaktsiya rasteniy na zasolenie i formirovanie soleustoychivosti. Uspehi Sovremennoy Biologii 127, 482–493 (in Russian).
Zaharin, A.A., Panichkin, L.A., 2009. Fenomen solerezistentnosti glikofitov. Fiziologiya Rasteniy 56, 107–116 (in Russian).
Published
2015-03-02
Section
Articles