Dynamic growth model simulation for carbon stock management in dry forest

  • A. A. Almulqu Kupang State Agricultural Polytechnic (Politani Kupang)
Keywords: dynamic growth model, CO2fix V3.1, carbon fluxes, biomass, simulated period


The model described in this article was simulated in order to provide the best recommendations related to the management of dry forest carbon stock. The methodology of this study is based to the dynamic growth model (CO2fix V3.1). The model was developed to calculate and estimate dry forest carbon fluxes and stocks. In this study the model was utilized for estimating how much carbon is sequestered in Diospyros celebica, Eucalyptus urophylla, Tectona grandis and mixed woods and soils. The results of this study show that in the 200 years simulated, total C stock had a tendency of increase. All of modules showed very similar patterns from 0 years to 40 years, except for bioenergy. Biomass had the highest value of carbon stock around 236.9 MGCHA–1, carbon soil around 292.7 MGCHA–1, product carbon storage around 226.8 MGCHA–1 and bioenergy carbon storage presented a sustained increase and reached 522.3 MGCHA–1 in the end of the simulated period. The contribution of the tree species component to total carbon stock was significantly positively correlated (R2 = 0.634–0.882, P < 0.05) with the time simulated in years, except foliage of Diospyros celebica (R2 = 0.301), foliage of Tectona grandis (R2 = 0.162) and foliage of Eucalipthus urophylla (R2 = 0.256). However, future studies should involve detailed examination on below-ground fraction and the effects of humans on global ecosystems.


Aber, J. D., Melillo, J. M., & McClaugherty, C. A. (1990). Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Journal of Botany, 68, 2201–2208.

Agus, F., Hairiah, K., & Mulyani, A. (2001). Measuring carbon stock in peat soils. World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Indonesian Centre for Agricultural Land Resources Research and Development, Bogor, Indonesia.

Bailis, R. (2009). Modeling climate change mitigation from alternative methods of charcoal production in Kenya. Biomass and Bioenergy, 33, 1491–1502.

Baishya, R., & Barik, S. K. (2011). Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in North-Eastern India. Annals of Forest Science, 68, 727–736.

Bermejo, I., Cańellas, I., & Miguel, A. S. (2004). Growth and yield models for teak plantations in Costa Rica. Forest Ecology and Management, 189, 97–110.

Brown, S., Phillips, H., Voicu, M., Abrudan, I., Blujdea, V., Pahontu, C., & Kostyushin, V. (2002). Baseline report for romanian afforestation project: Prototype carbon fund. Romania Afforestation of Degraded Agricultural Land Project Baseline Study, Emission Reductions Projection and Monitoring Plans. World Bank.

de Castilho, C. V., Magnusson, W. E., de Arau’jo, R. N. O., Luiza˜o, R. C. C., Luiza˜o, F. J., Lima, A. P., & Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management, 234, 85–96.

Emmerich, W. E. (2003). Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agricultural and Forest Meteorology, 116, 91–102.

Fiorese, G., & Guariso, G. (2013). Modeling the role of forests in a regional carbon mitigation plan. Renewable Energy, 52, 175–182.

Frolking, S., Palace, M., Clark, D. B., Chambers, J. Q., Shugart, H. H., & Hurtt, G. C. (2009). Forest disturbance and recovery – A general review in the context of space-borne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysic Restoration, 114, G00E02.

Grace, J., Jose, J. S., Meir, P., Miranda, H. S., & Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33, 387–400.

Jaramillo, V. J., Kauffman, J. B., Renteria-Rodriguez, L., Cummings, D. L., & Ellingson, L. J. (2003). Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems, 6, 609–629.

Jia, X., Zha, T. S., Wu, B., Zhang, Y. Q., Gong, J. N., Qin, S. G., Chen, G. P., Qian, D., Kellomäki, S., & Peltola, H. (2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences, 11, 4679–4693.

Kaonga, M. L., & Smith, T. B. P. (2012). Simulation of carbon pool changes in woodlots in eastern Zambia using CO2FIX model. Agrofororestry System, 86, 213–223.

Kaul, M., Mohren, G. M. J., & Dadhwal, V. K. (2010). Carbon storage and sequestration potential of selected tree species in India. Mitigation Adaptation Strategy Global Change, 15, 489–510.

Kinho, J. (2013). Mengembalikan kejayaan eboni di Sulawesi Utara. Kementerian Kehutanan Badan Penelitian dan Pengembangan Kehutanan. Balai Penelitian Kehutanan, Manado (in Indonesian).

Kobayashi, S. (2004). Landscape rehabilitation of degraded tropical forest ecosystems. Case study of the CIFROR/Japan project in Indonesia and Peru. Forest Ecology and Management, 201, 13–22.

Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89, 128–137.

Kort, J., & Turnock, R. (1999). Carbon reservoir and biomass in Canadian prairie shelterbelts. Agroforestry Systems, 44, 175–186.

Lemma, B., Kleja, D. B., Olsson, M., & Nilsson, I. (2007). Factors controlling soil organic carbon sequestration under exotic tree plantations: A case study using the CO2Fix model in Southwestern Ethiopia. Forest Ecology and Management, 252, 124–131.

Liang, Z., Yang, J., Shao, H., & Hana, R. (2006). Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau. Colloids and Surfaces B: Biointerfaces, 53, 23–28.

Magalhães, T. M., & Seifert, T. (2015). Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: Measurement uncertainty. Carbon Balance and Management, 10(9), 1–14.

Mani, S., & Parthasarathy, N. (2007). Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy, 31, 284–290.

Masera, O. R., Caligaris, J. F. G., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., Pussinen, A., de Jong, B. H. J., & Mohren, G. M. J. (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecological Modelling, 164, 177–199.

Moore, P. T., DeRose, R. J., Long, J. N., & Miegroet, H. V. (2012). Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests. Forests, 3, 300–316.

Murphy, P. G., & Lugo, A. E. (1986a). Ecology of tropical dry forests. Annual Review of Ecology, Evolution and Systematics, 17, 67–88.

Murphy, P. G., & Lugo, A. E. (1986b). Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica, 18, 89–96.

Nosettoa, M. D., Jobbagya, E. G., & Paruelo, J. M. (2006). Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 67, 142–156.

Oliveira, A. P. D., Schiavini, I., Vale, V. S. D., Lopes, S. D. F., & Arantes, C. D. S. (2014). Mortality, recruitment and growth of the tree communities in three forest formations at the Panga Ecological Station over ten years (1997–2007). Acta Botanica Brasilica, 82(2), 234–248.

Ryan, C. M., Williams, M., & Grace, J. (2010). Above- and belowground carbon stocks in a Miombo Woodland Landscape of Mozambique. Biotropica, 1–10.

Schelhaas, M. J., van Esch, P. W., Groen, T. A., de Jong, B. H. J., Kanninen, M., Liski, J., Masera, O., Mohren, G. M. J., Nabuurs, G. J., Palosuo, T., Pedroni, L., Vallejo, A., & Vilen, T. (2004). CO2FIX V 3.1 – Manual. Alterra, Wageningen.

Singh, B., Tripathi, K. P., & Singh, K. (2011). Community structure, diversity, biomass and net production in a rehabilitated subtropical forest in North India. Open Journal of Forestry, 1(2), 11–26.

Timander, P. (2011). Fertilization in Eucalyptus urophylla plantations in Guangxi, Southern China. Master Thesis. Swedish University of Agricultural Sciences.

Tolunay, D. (2011). Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkey Journal Agriculture and Forestry, 35, 265–279.

Vasalakshi, N. (1994). Fine root dynamics in two tropical dry evergreen forest of Southern India. Journal Bioscience, 19, 103–116.

Waghorn, M. J., Whitehead, D., Watt, M. S., Mason, E. G., & Harrington, J. J. (2015). Growth, biomass, leaf area and water-use efficiency of juvenile Pinus radiata in response to water deficits. New Zealand Journal of Forestry Science, 45(3), 1–11.

Wang, B., Zha, T. S., Jia, X., Wu, B., Zhang, Y. Q., & Qin, S. G. (2014). Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 11, 259–268.

Williams, J. W., Seabloom, E. W., Slayback, D., Stoms, D. M., & Viers, J. H. (2005). Anthropogenic impacts upon plant species richness and net primary productivity in California. Ecology Letters, 8, 127–137.

Worku, E., & Soromessa, T. (2015). Allometric equation for biomass determination in Juniperus procera Endl. and Podocarpus falcatus Mirb of wof-washa forest: Implication for climate change mitigation. American Journal of Life Sciences, 3(3), 190–202.

Yaseef, N. R., Yakir, D., Rotenberg, E., Schiller, G., & Cohen, S. (2009). Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology, 1–12.

Zianis, D., & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187, 311–332.

Zimmermann, J., Higgins, S., Grimma, V., Hoffmann, J., & Linstädter, A. (2010). Grass mortality in semi-arid savanna: The role of fire, competition and self-shading. Perspectives in Plant Ecology, Evolution and Systematics, 12, 1–8.