Morpho-ecological structure of oribatid mite (Acariformes, Oribatida) communities in the forest litter of recultivated areas


  • Y. Kulbachko Oles Honchar Dnipro National University
  • O. Didur Oles Honchar Dnipro National University
  • N. Khromykh Oles Honchar Dnipro National University
  • A. Pokhylenko Oles Honchar Dnipro National University
  • T. Lykholat Oles Honchar Dnipro National University
  • B. Levchenko Oles Honchar Dnipro National University
Keywords: environment rehabilitation; ecosystem services; forest recultivation; red juniper; Juniperus virginiana.

Abstract

The study of morpho-ecological organization of oribatid mite communities (Acariformes, Oribatida) inhabiting forest litter of recultivated areas in steppe zone conditions of Ukraine was performed. The role of the forest and forest floor litter in optimization of the ecological situation on degraded lands was demonstrated. The function of environment creation by oribatids, as primary destructors of dead plant matter, supporting such ecosystem services as soil fertility improvement and nutrients turnover was highlighted. The research was performed within different stratigraphic types of bulk edaphotops in the recultivated plot of “Pavlogradskaya” colliery (Pavlograd, Dnipropetrovsk region, Ukraine) planted with red juniper (Juniperus virginiana L.). Withdrawal and collection of mites was performed with thermoeclector. For determination of the domination structure in the mite communities, the Engelmann scale was used. Adaptive (morpho-ecological) groups of oribatid mites were diagnosed by Krivolutsky. It was established that the number of species of oribatid mites in the forest litter of the studied red juniper plantation varied from 16 to 25. Average density of oribatid mites varied from 4,720 to 25,327 ind./m2. Among such morpho-ecological groups as soil surface inhabitants, small soil pore inhabitants, deep soil forms, floor litter inhabitants and unspecified forms, identified in the coniferous litter, the share of unspecified forms increased from loess-like loam type (21% of total amount) to Calcic Chernozem types with different stratigraphy (41.0%, 70.0% and 70.4% accordingly). Deep soil forms in the forest floor litter of the studied red juniper plots were not identified for any of recultivation types. The obtained results expand our understanding of the role of oribatid mites in the processes of ecological rehabilitation of disturbed ecosystems in the conditions of modern nature management.

References

Amossé, J., Turberg, P., Kohler-Milleret, R., Gobat, J.-M. & Le Bayon, R.-C. (2015). Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials. Geoderma, 243–244, 50–57.


Badejo, M. A., de Aquino, A. M., de-Polli, H., & Correia, M. E. F. (2004). Response of soil mites to organic cultivation in an ultisol in southeast Brazil. Experimental and Applied Acarology, 34(3–4), 345–365.


Benbrahim, K. F., Ismaili, M., Benbrahim, S. F., & Tribak, A. (2004). Land degradation by desertification and deforestation in Morocco. Sécheresse, 15(4), 307–320.


Berke, S. K. (2010). Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integrative and Comparative Biology, 50(2), 147–157.


Bertram, C., & Rehdanz, K. (2015). The role of urban green space for human well-being. Ecological Economics, 120, 139–152.


Bird, S. B., Coulson, R. N., & Fisher, R. F. (2004). Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. Forest Ecology and Management, 202(1–3), 195–208.


Blouin, M., Hodson, M. E., & Delgado, E. A. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(1), 161–182.


Bluhm, C., Butenschoen, O., Maraun, M., & Scheu, S. (2019). Effects of root and leaf litter identity and diversity on oribatid mite abundance, species richness and community composition. PLoS One, 14(7), e0219166.


Borrellia, P., Panagosa, P., Langhammer, J., Apostol, B., & Schütt, B. (2016). Assessment of the cover changes and the soil loss potential in European forestland: First approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems. Ecological Indicators, 60, 1208–1220.


Brygadyrenko, V. V. (2016). Vplyv potuzhnosti pidstylky na strukturu pidstylkovoi mezofauny shyrokolystianykh lisiv stepovoi zony Ukrainy [Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 240–248 (in Ukrainian).


Bulanova-Zakhvatkina, E. M. (1967). Pantsirnyie kleschi-oribatidyi [Oribatid mites]. Vysshaya Shkola, Moscow (in Russian).


Byers, J. E., Cuddington, K., Jones, C. G., Talley, T. S., Hastings, A., Lambrinos, J. G., Crooks, J. A., & Wilson, W. G. (2006). Using ecosystem engineers to restore ecological systems. Trends in Ecology and Evolution, 21, 493–500.


Cameron, E. K., Proctor, H. C., & Bayne, E. M. (2013). Effects of an ecosystem engineer on belowground movement of microarthropods. PLoS One, 8(4), e62796.


Chakravarty, S., Ghosh, S. K., Suresh, С. Р., Dey, A. N., & Shukla, G. (2012). Deforestation: Causes, effects and control strategies. In: Okia, C. A. (Ed.). Global perspectives on sustainable forest management. InTech. Pp. 3–28.


Chibrik, T. S., Lukina, N. V., Filimonova, E. I., Glazyrina, M. A., Rakov, E. A., Maleva, M. G., & Prasad, M. N. V. (2016). Biological recultivation of mine industry deserts: Facilitating the formation of phytocoenosis in the Middle Ural region, Russia. In: Prasad, M. N. V. (Ed.). Bioremediation and Bioeconomy. Elsevier. Pp. 389–418.


Chornobai, Y. N. (2000). Forest ecosystems is the most important factor of ecological situation optimization on degraded lands [Plant detritus transformation in the natural ecosystems]. State Natural History Museum of Ukrainian Academy of Sciences Publishers, Lviv (in Ukrainian).


Cunha, L., Brown, G. G., Stanton, D. W. G., Da Silva, E., Hansel, F. A., Jorge, G., McKey, D., Vidal-Torrado, P., Macedo, R. S., Velasquez, E., James, S. W., Lavelle, P., Kille, P., & the Terra Preta de Indio Network (2016). Soil animals and pedogenesis: The role of earthworms in anthropogenic soils. Soil Science, 181(3/4), 110–125.


de Visser, S., Thébault, E., & de Ruiter, P. C. (2013). Ecosystem engineers, keystone species. In: Leemans, R. (Eds.). Ecological systems. Springer, New York. Pp. 59–68.


de Waroux, Y. P., & Lambin, E. F. (2012). Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Marocco). Applied Geography, 32, 777–786.


Didur, O. O., Kulbachko, Y. L., & Pakhomov, O. Y. (2018b). Species structure of oribatid mite population (Acari, Oribatea) in the forest floor litter in the reclaimed territories (Ukraine). Vestnik Zoologii, 52(4), 331–340.


Didur, O., Kulbachko, Y. Ovchynnykova, Y., Pokhylenko, A., Lykholat, T. (2019). Zoogenic mechanisms of ecological rehabilitation of urban soils of the park zone of megapolis: Earthworms and soil buffer capacity. Journal of Environmental Research, Engineering and Management, 75(1), 24–33.


Didur, O., Kulbachko, Y., & Maltsev, Y. (2018a). Impact of tropho-metabolic activity of earthworms (Lumbricidae) on distribution of soil algae within Acer platanoides L. plantation in recultivated territories of Western Donbass (Ukraine). Ukrainian Journal of Ecology, 8(2), 18–23


Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53(6), 343–352.


Faly, L. I., & Brygadyrenko, V. V. (2014). Patterns in the horizontal structure of litter invertebrate communities in windbreak plantations in the steppe zone of the Ukraine. Journal of Plant Protection Research, 54(4), 414–420.


Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.


Giljarov, M. S. (Ed.). (1975). Opredelitel obitayuschih v pochve kleschey (Sarcoptiformes) [Key to soil-inhabiting mites, Sarcoptiformes]. Nauka, Moscow (in Russian).


Gormsen, D., Hedlund, K., & Huifu, W. (2006). Diversity of soil mite communities when managing plant communities on set-aside arable land. Applied Soil Ecology, 31, 147–158.


Grimaldi, M., Jiménez, J. J., McKey, D., Mathieu, J., Velasquez, E., & Zangerlé, A. (2016). Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Science, 181(3/4), 91–109.


Gudym, N. G. (2016). Sezonna dynamika chyselnosti Brachyiulus jawlowskii (Diplopoda, Julidae) na areni r. Dnipro [Seasonal population dynamics of Brachyiulus jawlowskii (Diplopoda, Julidae) in the Dnieper river arena]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 489–494 (in Ukrainian).


Hättenschwiler, S., Tiunov, A. V., & Scheu, S. (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191–218.


Huapeng, C., Feng, L., Huai, W., Jianzhang, M., Xibo, J., Chunmei, L., & Kelan, X. (1997). Assessment of three methods for estimating abundance of ungulate populations. Journal of Forestry Research, 8(2), 111–114.


Ibarra, J. M. N., & de las Heras, M. M. (2005). Open-cast mining reclamation. In: Mansourian, S., Vallauri, D., & Dudley, N. (in cooperation with WWF International). Forest restoration in landscapes: Beyond planting trees. Springer, New York. Pp. 370–376.


Jakšová, P., Ľuptáčik, P., & Miklisová, D. (2019). Distribution of Oribatida (Acari) along a depth gradient in forested scree slopes. Subterranean Biology, 31, 29–48.


Jouquet, P., Blanchart, E., & Capowiez, Y. (2014). Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology, 73, 34–40.


Khromykh, N., Lykholat, Y., Shupranova, L., Kabar, A., Didur, O., Lykholat, T., & Kulbachko, Y. (2018). Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138.


Kitz, F., Steinwandter, M., Traugott, M., & Seeber, J. (2015). Increased decomposer diversity accelerates and potentially stabilises litter decomposition. Soil Biology and Biochemistry, 82, 138–141.


Klymenko, G., Kovalenko, I., Lykholat, Y., Khromykh, N., Didur, O., & Alekseeva, A. (2017). Intehralna otsinka stanu populiatsii ridkisnykh vydiv roslyn [The integral assessment of the rare plant populations]. Ukrainian Journal of Ecology, 7(2), 201–209 (in Ukrainian).


Kolodochka, L. A., & Shevchenko, O. S. (2013). Diversity and community structure of Oribatid mites (Acari, Oribatei) at memorial complexes of a megapolis. Vestnik Zoologii, 47(4), 291–297.


Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4), 236–249.


Krivolutsky, D. A. (1965). Morfo-ekologicheskie tipyi pantsirnyih kleschey (Acariformes, Oribatei) [Morpho-ecological types of oribatid mites (Acariformes, Oribatei)]. Journal of Zoology, 44, 1176–1189 (in Russian).


Lavelle, P., Spain, A., Blouin, M., Brown, G., Decaëns, T., Grimaldi, M., Jiménez, J. J., McKey, D., Mathieu, J., Velasquez, E., & Zangerlé, A. (2016). Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Science, 181(3/4), 91–109.


Lykholat, T., Lykholat, O., & Antonyuk, S. (2016). Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. Cytology and Genetics, 50(1), 32–41.


Lykholat, Y. V., Khromykh, N. O., Pirko, Y. V., Alexeyeva, A. A., Pastukhova, N. L., & Blume, Y. B. (2018b). Epicuticular wax composition of leaves of Tilia L. trees as a marker of adaptation to the climatic conditions of the steppe Dnieper. Cytology and Genetics, 52(5), 323–330.


Lykholat, Y., Khromykh, N., Didur, O., Alexeyeva, A., Lykholat, T., & Davydov, V. (2018a). Modeling the invasiveness of Ulmus pumila in urban ecosystems under climate change. Regulatory Mechanisms in Biosystems, 9(2), 161–166.


Marian, F., Sandmann, D., Krashevska, V., Maraun, M., & Scheu, S. (2018). Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biology and Biochemistry, 125, 263–274.


Mbaya, R. P. (2013). Land degradation due to mining: The Gunda scenario. International Journal of Geography and Geology, 2(12), 144–158.


Mori, A. S., Lertzman, K. P., & Gustafsson, L. (2017). Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. Journal of Applied Ecology, 54(1), 12–27.


Nazarenko, M., Lykholat, Y., Grigoryuk, I., & Khromykh, N. (2018). Optimal doses and concentrations of mutagens for winter wheat breeding purposes. Part I. Grain productivity. Journal of Central European Agriculture, 19(1), 194–205.


Novitskii, M. L. (2011). Granulometricheskij sostav melkozema sulfidnoj gornoj porody i tehnogennyh substratov shahtnyh otvalov [Granulometric texture of sulfide subsurface rock fine grained soil and mine spoil technogenic substrates]. Bulletin of the Nikitsky Botanical Garden, 103, 85–87 (in Russian).


Ojeda, M., & Gasca-Pineda, J. (2019) Abundance and diversity of the soil microarthropod fauna from the Cuatro Ciénegas Basin. In: Álvarez, F., Ojeda, M. (Eds.). Animal diversity and biogeography of the Cuatro Ciénegas Basin. Cuatro Ciénegas Basin: An endangered hyperdiverse oasis. Springer, Cham. Рр. 29–51.


Ospina-Bautista, F., & Estévez Varón, J. V. (2016). Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri. Brazilian Journal of Biology, 76(3), 686–691.


Pavlichenko, P. G. (1994). Opredelitel tseratozetoidnyih kleschey (Oribatei, Ceratozetoidea) Ukrainyi [A guide to the Ceratozetoid mites (Oribatei, Ceratozetoidea) of Ukraine]. I. I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kiev (in Russian).


Pertseva, T. A., Lykholat, E. A., & Gurzhiy, E. V. (2008). Vliyanie tiotropiya bromida na sostoyanie mukociliarnogo klirensa u bol’nyh hronicheskim obstruktivnym zabolevaniem legkih [The influence of tiotropium bromide on mucociliary clearance’s condition in patients with chronic obstructive pulmonary disease]. Ukrainian Pulmonology Journal, 1, 13–15 (in Ukrainian).


Pokhylenko, A., Lykholat, O., Didur, O., Kulbachko, Y., & Lykholat, T. (2019). Morphological variability of Rossiulus kessleri (Diplopoda, Julida) from different biotopes within Steppe Zone of Ukraine. Ukrainian Journal of Ecology, 9(1), 176–182.


Riggins, J. J., Davis, С. A., & Hoback, W. W. (2009). Biodiversity of belowground invertebrates as an indicator of wet meadow restoration success (Platte River, Nebraska). Restoration Ecology, 17(4), 495–505.


Schneider, K., & Maraun, M. (2005). Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia, 49, 61–67.


Seniczak, S., Kaczmarek, S., Seniczak, A., & Rraczyk, R. (2012). Oribatid mites (Acari, Oribatida) of open and forested habitats of Korčula Island (Croatia). Biological Letters, 49(1), 27–34.


Shtirts, A. D. (2015). Ekologicheskaya struktura naseleniya pancirnyh kleshej (karer “Osnovnoj”, Doneckaya oblast) [The ecological structure of oribatid mites population (“Osnovnoy” quarry, Donetsk region)]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 5(2), 16–30.


Shtirts, А. D. (2015). Ocenka vliyaniya antropogennoj nagruzki na ekosistemy s ispolzovaniem integralnogo pokazatelya soobshestv pancirnyh kleshej [Evaluation of anthropogenic pressures on ecosystems by using of the integral oribatid mites community’s index]. Acta Biologiсa Sibirica, 1, 51–66. (in Russian).


Shulman, M. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecologica, 44(1), 28–37.


Sjursen, H., Michelsen, A., & Holmstrup, M. (2005). Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology, 28(1), 79–93.


Smrž, J., & Norton, R. A. (2004). Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida). Pedobiologia, 48(2), 111–120.


Stott, D. E., & Moebius-Clune, B. N. (2017). Soil health: Challenges and opportunitie. In: Field, D. J., Morgan, C. L. S., & McBratney, A. B. (Eds.). Global soil security. Progress in soil science. Springer, Cham. Pp. 109–121.


Striganova, B. R. (1980). Pitanie pochvennyh saprofagov [Feeding of soil saprophages]. Nauka, Moscow (in Russian).


Subías, L. S., Shtanchaeva, U. Y., & Arillo, A. (2012). Listado de los ácaros oribátidos (Acariformes, Oribatida) de las diferentes regiones biogeográficas del mundo [Checklist of the oribatid mites (Acariformes, Oribatida) of the different world biogeographical regions]. Electronic Monograph (in Spanish).


Sylvain, Z. A., & Buddle, C. M. (2010). Effects of forest stand type on oribatid mite (Acari: Oribatida) assemblages in a Southwestern Quebec forest. Pedobiologia, 53(5), 321–325.


Toth, Z., Hornung, E., Baldi, A., & Kovacs-Hostyanszki, A. (2016). Effects of set-aside management on soil macrodecomposers in Hungary. Applied Soil Ecology, 99, 97–105.


Walter, D. E., & Proctor, H. C. (2013). Mites: Ecology, evolution, and behaviour. 2nd ed. Springer Netherlands.


Wehner, K., Heethoff, M., & Brückner, A. (2018). Seasonal fluctuation of oribatid mite communities in forest microhabitats. PeerJ, 6, e4863.


Zimmer, M., & Topp, W. (1998). Microorganisms and cellulose digestion in the gut of the woodlise Porcellio scaber. Journal of Chemical Ecology, 24(8), 1397–1408.

Published
2019-11-14
Section
Articles

Most read articles by the same author(s)