Repellent and fumigant toxic potential of three essential oils against Ephestia kuehniella


  • H. Bouzeraa Larbi Tebessi University
  • M. Bessila-Bouzeraa Badji Mokhtar University
  • N. Labed Chadli Bendjdid University
Keywords: stored grains; flour moth; Artemisia herba alba; Ruta montana; Origanum vulgare; insecticidal properties.

Abstract

Essential oils, when used as bio-insecticides in the control of insect pests of stored grains have shown specificity and variation in the potentiality of their mode of action. In the present study, three essential oils extracted from three aromatic plants of different families, white wormwood (Artemisia herba alba, Asteraceae), oregano (Origanum vulgare, Lamiaceae) and rue (Ruta montana, Rutaceae), were evaluated for their repellent and fumigant toxic potential against the flour moth larvae, Ephestia kuehniella (Lepidoptera, Pyralidae), under laboratory conditions. The essential oils extraction was done by the hydrodistillation method. The repellent activity was carried out in Petri dishes using a filter paper treated with different oil dilutions (25, 75, 100, 120, 130, 150 µL/mL). The fumigant toxicity was determined on three concentrations (50, 130, 150 µL/L air). Two plants were shown to be repellent against the E. kuehniella larvae. Origanum oil was the most repellent with 67% of repellency rate followed by Artemisia oil (46%) at 120µL/mL after 2 hours of exposure. The oil of R. montana had an attractant activity against the larvae and was the most toxic with 56.7% of larval mortality in the first 24 hours. The median lethal concentrations (LC50) recorded were 11.6, 175.4 and 1100.0 µL/L air for the plant oils R. montana, O. vulgare and A. herba alba, respectively. R. montana and O. vulgare essential oil are shown to be efficient with high toxic and repellent properties against E. kuehniella larvae. Their specific potential could be integrated in the selection of the best bioinsecticides for the optimum protection of stored grain.

References

Abdel-Tawab, H. M. (2016). Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, 9(5), 354–378.


Adedire, C. O., Obembe, O. M., Akinkurolere, R. O., & Oduleye, S. O. (2011). Response of Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae) to extracts of cashew kernels. Journal of Plant Diseases and Protection, 118(2), 75–79.


Akinkurolere, R. O., Adedire, C. O., & Odeyemi, O. O. (2006). Laboratory evaluation of the toxic properties of forest Anchomanes, Anchomanes difformis against pulse beetles Callosobruchus maculatus (Coleoptera: Bruchidae). Insect Science, 13(1), 25–29.


Angioni, A., Barra, A., Coroneo, V., Dessi, S., & Cabras, P. (2006). Chemical composition, seasonal variability and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. Journal of Agricultural and Food Chemistry, 54(12), 4364–4370.


Bouzeraa, H., Bessila-Bouzeraa, M., Labed, N., Sedira, F., & Ramdani, L. (2018). Evaluation of the insecticidal activity of Artemisia herba alba essential oil against Plodia interpunctella and Ephestia kuehniella (Lepidoptera, Pyralidae). Journal of Entomology and Zoology Studies, 6(5), 145–150.


Boyko, A. A., & Brygadyrenko, V. V. (2016). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 519–525.


Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of Strongyloides ransomi larvae (Nematoda, Rhabditida) under the influence of synthetic flavourings. Regulatory Mechanisms in Biosystems, 8(1), 36–40.


Busatta, C., Mossi, A. J., Rodrigues, M. R. A., Cansian, R. L., & de Oliveira, J. V. (2007). Evaluation of Origanum vulgare essential oil as antimicrobial agent sausage. Brazilian Journal of Microbiology, 38(4), 610–616.


Chaubey, M. K. (2014). Biological activities of Allium sativum essential oil against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Herba Polonica, 60(2), 41–55.


Chaubey, M. K. (2017). Fumigant and contact toxicity of Allium sativum (Alliaceae) essential oil against Sitophilus oryzae L. (Coleoptera: Dryophthoridae). Entomology and Applied Science Letters, 3(2), 43–48.


Chermenskaya, T. D., Stepanycheva, E. A., Shchenikova, A. V., & Chakaeva, A. S. (2010). Insecto acaricidal and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Industrial Crops and Products, 32(2), 157–163.


Davis, E. E. (1985). Insect repellents: Concepts of their mode of action relative to potential sensory mechanisms in mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 22(3), 237–243.


Dickens, J. C., & Bohbot, J. D. (2013). Mini review: Mode of action of mosquito repellents. Pesticide Biochemistry and Physiology, 106(3), 149–155.


Ebadollahi, A., Safaralizadeh, M. H., & Pourmirza, A. A. (2010). Fumigant toxicity of Lavandula stoechas L. oil against three insect pests attacking stored products. Journal of Plant Protection Research, 50(1), 56–60.


Emekci, M., Navarro, S., Donahaye, E., Rindner, M., & Azrieli, A. (2004). Respiration of Rhyzopertha dominica (F.) at reduced oxygen concentrations. Journal of Stored Products Research, 40(1), 27–38.


Enan, E. E. (2005). Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Archives of Insect Biochemistry and Physiology, 59(3), 161–171.


Germinara, G. S., Cristofaro, A., & Rotundo, G. (2015). Repellents effectively disrupt the olfactory orientation of Sitophilus granarius to wheat kernels. Journal of Pest Science, 88(4), 675–684.


Huignard, J., Dugravot, S., Ketoh, K. G., Thibout, E., & Glitho, A. I. (2002). Utilisation de composés secondaires des végétaux pour la protection des graines d’une légumineuse, le niébé. Conséquences sur les insectes ravageurs et leurs parasitoides. In: Regnault-Roger, C., Philogène, B. J. R., & Vincent, C. (Ed.). Biopesticides d’Origine Végétale. Lavoisier Tech & Doc, Paris. Pp. 133–149.


Huotari, M., Jaskari, M., Annila, E., & Lantto, V. (2003). Responses of olfactory receptor neurons of the large pine weevil to a possible deterrent Neutroil® and two other chemicals. Silva Fennica, 37(1), 149–156.


Ikbal, C., Ben-Hamouda, A., Tayeb, W., Zarrad, K., Bouslema, T., & Laarif, A. (2017). The Tunisian Artemisia essential oil for reducing contamination of stored cereals by Tribolium castaneum. Food Technology and Biotechnology, 56(2), 247–256.


Isman, M. B., Machial, C. M., Miresmailli, S., & Bainard, L. D. (2007). Essential oil-based pesticides: New insights from old chemistry. In: Ohkawa, H., Miyagawa, H., & Lee, P. W. (Eds.). Pesticide chemistry crop protection, public health, environmental healthy. Wiley-VCH, Weinheim. Pp. 201–209.


Jacobson, M. (1989). Botanical pesticides: Past, present, and future. In: Arnason, J. T., Philogene, B. J. R., & Morand, P. (Eds.). Insecticides of plant origin. ACS Symposium Series No. 387. American Chemical Society, Washington. Pp. 1–10.


Jayakumar, M., Arivoli, S., Raveen, R., & Tennyson, S. (2017). Repellent activity and fumigant toxicity of a few plant oils against the adult rice weevil Sitophilus oryzae Linnaeus 1763 (Coleoptera: Curculionidae). Journal of Entomology and Zoology Studies, 5(2), 324–335.


Katerinopoulos, H. E., Pagona, G., Afratis, A., Stratigakis, N., & Roditakis, N. (2005). Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. Journal of Chemical Ecology, 31(1), 111–122.


Kaufmann, C., & Briegel, H. (2004). Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparous (CPDF). Journal of Vector Ecology, 29(1), 140–153.


Martynov, V. O., Titov, O. G., Kolombar, T. M., & Brygadyrenko, V. V. (2019). Influence of essential oils of plants on themigration activity of Tribolium confusum (Coleoptera, Tenebrionidae). Biosystems Diversity, 27(2), 177–185.


Pair, S. D., & Horvat, R. J. (1997). Volatiles of Japanese honeysuckle flowers as attractants for adult lepidopteran insects. US Patent No. 5665344, September 9, washington DS.


Paulraj, M. G., & Sahayaraj, K. (2002). Efficacy of Eclipta alba (L.) Hassk and Ocimum sanctum (L.) leaves extracts and powders against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in groundnut. In: Sanjayan, K. P., Mahalingam, V., & Muralirangan, M. C. (Eds.). Vistas of entomological research for the new millenium. Gill Research Institute, Chennai. Pp. 80.


Priestley, C. M., Burgess, I. F., & Williamson, E. M. (2006). Lethality of essential oil constituents towards the human louse, Pediculus humanus and its eggs. Fitoterapia, 77(4), 303–309.


Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29(9), 913–920.


Sakuma, M., & Funkami, H. (1985). The linear track olfactometer: An assay device for taxes of the german cockroach, Blattella germanica (Linn.) toward their aggregation pheromone. Applied Entomology and Zoology, 74(6), 523–525.


Sathantriphop, S., Achee, N. L., Sanguanpong, U., & Chareonviriyaphap, T. (2015). The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus. Journal of Vector Ecology, 40(2), 318–326.


Soleimani-Ahmadi, M., Abtahi, S. M., Madani, A., Paksa, A., Abadi, Y. S., Gorouhi, M. A., & Sanei-Dehkordi, A. (2017). Phytochemical profile and mosquito larvicidal activity of the essential oil from aerial parts of Satureja bachtiarica Bunge against malaria and lymphatic filariasis vectors. Journal of Essential Oil Bearing Plants, 20(2), 328–336.


Sritabutra, D., & Soonwera, M. (2013). Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.). Asian Pacific Journal of Tropical Disease, 3(4), 271–276.


Talukder, F. A., & Howse, P. E. (1994). Laboratory evaluation of toxic repellent properties of the pithraj tree, Aphanamixis polystachya Wall & Parker, against Sitophilus oryzae (L.). International Journal of Pest Management, 40(3), 274–279.


Taylor, R. W., Romaine, I. M., Liu, C., Murthi, P., Jones, P. L., Waterson, A. G., Sulikowski, G. A., & Zwiebel, L. J. (2012). Structure-activity relationship of a broad-spectrum insect odorant receptor agonist. ACS Chemical Biology, 7(10), 1647–1652.


Tong, F., & Bloomquist, J. R. (2013). Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 50(4), 826–832.


Torto, B. (2011). Chemical signals as attractants, repellents and aggregation stimulants. Chemical Ecology. In: Hardege, J. D. (Ed.). Encyclopedia of life support systems. Developed under the auspices of the UNESCO. EOLSS Publishers, Oxford. Pp. 186–199.


Tripathi, A. K., Upadhyay, S., Bhiyan, M., & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 52–63.


Verheggen, F., Ryne, C., Olsson, P. O., Arnaud, L., Lognay, G., Högberg, H. E., Persson, D., Haubruge, E., & Löfstedt, C. (2007). Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle, Tribolium confusum. Journal of Chemical Ecology, 33, 525–539.


Zanuncio, J. C., Mourão, S. A., Martínez, L. C., Wilcken, C. F., Ramalho, F. S., Plata-Rueda, A., Soares, M. A., & Serrão, J. E. (2016). Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae). Scientific Reports, 6(6), 30261.


Zufall, F., & Leinders-Zufall, T. (2000). The cellular and molecular basis of odor adaptation. Chemical Senses, 25(4), 473–481.

Published
2019-02-10
Section
Articles