Bacterial synthesis of nanoparticles: A green approach


Keywords: nanoparticles; bacteria; methods of

Abstract

In recent decades, the attention of scientists has been drawn towards nanoparticles (NPs) of metals and metalloids. Traditional methods for the manufacturing of NPs are now being extensively studied. However, disadvantages such as the use of toxic agents and high energy consumption associated with chemical and physical processes impede their continued use in various fields. In this article, we analyse the relevance of the use of living systems and their components for the development of "green" synthesis of nano-objects with exceptional properties and a wide range of applications. The use of nano-biotechnological methods for the synthesis of nanoparticles has the potential of large-scale application and high commercial potential. Bacteria are an extremely convenient target for green nanoparticle synthesis due to their variety and ability to adapt to different environmental conditions. Synthesis of nanoparticles by microorganisms can occur both intracellularly and extracellularly. It is known that individual bacteria are able to bind and concentrate dissolved metal ions and metalloids, thereby detoxifying their environment. There are various bacteria cellular components such as enzymes, proteins, peptides, pigments, which are involved in the formation of nanoparticles. Bio-intensive manufacturing of NPs is environmentally friendly and inexpensive and requires low energy consumption. Some biosynthetic NPs are used as heterogeneous catalysts for environmental restoration, exhibiting higher catalytic efficiency due to their stability and increased biocompatibility. Bacteria used as nanofactories can provide a new approach to the removal of metal or metalloid ions and the production of materials with unique properties. Although a wide range of NPs have been biosynthetic and their synthetic mechanisms have been proposed, some of these mechanisms are not known in detail. This review focuses on the synthesis and catalytic applications of NPs obtained using bacteria. Known mechanisms of bioreduction and prospects for the development of NPs for catalytic applications are discussed.

References

Ali, I., Peng, C., Khan, Z. M., Naz, I., Sultan, M., Ali, M., Abbasi, I. A., Islam, Т. & Ye, T. (2019а). Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. Journal of Environmental Management, 230, 128–150.


Ali, J., Ali, N., Wang, L., Waseem, H., & Pan, G. (2019). Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. Journal of Microbiological Methods, 159, 18–25.


Allam, N. G., Ismail, G. A., El-Gemizy, W. M., & Salem, M. A. (2019). Biosynthesis of silver nanoparticles by cell-free extracts from some bacteria species for dye removal from wastewater. Biotechnology Letters, 41(3), 379–389.


Avendaño, R., Chaves, N., Fuentes, P., Sánchez, E., Jiménez, J. I., Chavarría, M. (2016). Production of selenium nanoparticles in Pseudomonas putida KT2440. Scientific Reports, 6, 1–9.


Bakir, E., Younis, N., Mohamed, M., & El Semary, N. (2018). Cyanobacteria as nanogold factories: Chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Marine Drugs, 16(6), 217.


Balachandran, Y. L., Girija, S., Selvakumar, R., Tongpim, S., Gutleb, A. C., & Suriyanarayanan, S. (2013). Differently environment stable bio-silver nanoparticles: Study on their optical enhancing and antibacterial properties. PLoS One, 8(10), e77043.


Banerjee, K., & Rai, V. R. (2018). A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. BioNanoScience, 8(1), 17–31.


Barabadi, H., Ovais, M., Shinwari, Z. K., & Saravanan, M. (2017). Anti-cancer green bionanomaterials: present status and future prospects. Green Chemistry Letters and Reviews, 10(4), 285–314.


Baxter-Plant, V. S., Mikheenko, I. P., & Macaskie, L. E. (2003). Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation, 14(2), 83–90.


Bityutskyy, V. S., Tsekhmistrenko, О. S., Tsekhmistrenko, S. I., Spyvack, M. Y., & Shadura, U. M. (2017). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology, 19(3), 9–17.


Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Melnychenko, O., & Kharchyshyn, V. (2019). Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails. Modern Development Paths of Agricultural Production. Springer, Cham. Pp. 623–632.


Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafińska, K., Szultka-Mlynska, M., Golinska, P., Wypij, M., Laskowski, D., & Dahm, H. (2018). Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology and Infection, 51(1), 45–54.


Chekman, I. S., Horchakova, N. O., & Simonov, P. V. (2017). Biologically active substances as nanostructures: A biochemical aspect. Klìnìčna Farmacìâ, 21(2), 15–22.


Chen, H., Seiber, J. N., & Hotze, M. (2014). ACS select on nanotechnology in food and agriculture: A perspective on implications and applications. Journal Agricultural and Food Chemistry, 62(6), 1209–1212.


Chen, Z., Yin, J. J., Zhou, Y. T., Zhang, Y., Song, L., Song, M., Hu, S., & Gu, N. (2012). Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 6(5), 4001–4012.


Cheng, S., Li, N., Jiang, L., Li, Y., Xu, B., & Zhou, W. (2019). Biodegradation of metal complex Naphthol Green B and formation of iron-sulfur nanoparticles by marine bacterium Pseudoalteromonas sp CF10-13. Bioresource Technology, 273, 49–55.


Choi, S., Johnston, M., Wang, G. S., & Huang, C. P. (2018). A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Science of the Total Environment, 625, 1321–1329.


Cormode, D. P., Gao, L., & Koo, H. (2018). Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends in Biotechnology, 36(1), 15–29.


Daima, H. K., Selvakannan, P. R., Kandjani, A. E., Shukla, R., Bhargava, S. K., & Bansal, V. (2014). Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale, 6(2), 758–765.


Das, M., & Chatterjee, S. (2019). Green synthesis of metal/metal oxide nanoparticles toward biomedical applications: Boon or bane. In: Shukla, A. K., & Iravani, S. (Eds.). Green synthesis, characterization and applications of nanoparticles. Elsevier. Pp. 265–301.


Das, S. K., & Marsili, E. (2010). A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Reviews in Environmental Science and Bio/Technology, 9(3), 199–204.


Dhapte, V., & Pokharkar, V. (2019). Nanosystems for drug delivery: Design, engineering, and applications. In: Shukla, A. K., & Iravani, S. (Eds.). Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, Pp. 321–345.


Diaz, M. R., Swart, P. K., Eberli, G. P., Oehlert, A. M., Devlin, Q., Saeid, A., & Altabet, M. A. (2015). Geochemical evidence of microbial activity within ooids. Sedimentology, 62(7), 2090–2112.


Diegoli, S., Manciulea, A. L., Begum, S., Jones, I. P., Lead, J. R., & Preece, J. A. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment, 402(1), 51–61.


Doshi, B., Sillanpää, M., & Kalliola, S. (2018). A review of bio-based materials for oil spill treatment. Water Research, 135, 262–277.


Dubey, K., Anand, B. G., Badhwar, R., Bagler, G., Navya, P. N., Daima, H. K., & Kar, K. (2015). Tyrosine-and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids, 47(12), 2551–2560.


Emmanuel, R., Saravanan, M., Ovais, M., Padmavathy, S., Shinwari, Z. K., & Prakash, P. (2017). Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. Microbial Pathogenesis, 113, 295–302.


Fang, X., Wang, Y., Wang, Z., Jiang, Z., & Dong, M. (2019). Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 12(1), 190.


Fatemi, M., Mollania, N., Momeni-Moghaddam, M., & Sadeghifar, F. (2018). Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. Journal of Biotechnology, 270, 1–11.


Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.


Fu, P. P. (2014). Introduction to the special issue: nanomaterials-toxicology and medical applications. Journal of Food and Drug Analysis, 22(1), 1–2.


Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C., & Yu, H. (2014a). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75.


Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 9(23), 12944–12967.


Gaidhani, S. V., Yeshvekar, R. K., Shedbalkar, U. U., Bellare, J. H., & Chopade, B. A. (2014). Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochemistry, 49(12), 2313–2319.


Gan, L., Zhang, S., Zhang, Y., He, S., & Tian, Y. (2018). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Preparative Biochemistry and Biotechnology, 48(7), 582–588.


Gao, L., Fan, K., & Yan, X. (2017). Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 7(13), 3207–3227.


Garole, D. J., Choudhary, B. C., Paul, D., & Borse, A. U. (2018). Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environmental Science and Pollution Research, 25(11), 10911–10925.


Ghiuță, I., Cristea, D., Croitoru, C., Kost, J., Wenkert, R., Vyrides, I., Anayiotos, А., & Munteanu, D. (2018). Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Applied Surface Science, 438, 66–73.


Goutam, S. P., Saxena, G., Roy, D., Yadav, A. K., & Bharagava, R. N. (2020). Green synthesis of nanoparticles and their applications in water and wastewater treatment. In: Saxena, G., & Bharagava, R. N. (Eds.). Bioremediation of industrial waste for environmental safety. Springer Nature, Singapore. Pp. 349–379.


Grillone, A., Li, T., Battaglini, M., Scarpellini, A., Prato, M., Takeoka, S., & Ciofani, G. (2017). Preparation, characterization, and preliminary in vitro testing of nanoceria-loaded liposomes. Nanomaterials, 7(9), 276.


Grzelczak, M., & Liz-Marzán, L. M. (2014). The relevance of light in the formation of colloidal metal nanoparticles. Chemical Society Reviews, 43(7), 2089–2097.


Gupta, R., & Padmanabhan, P. (2018). Biogenic synthesis and characterization of gold nanoparticles by a novel marine bacteria Marinobacter algicola: Progression from nanospheres to various geometrical shapes. The Journal of Microbiology, Biotechnology and Food Sciences, 8(1), 732.


Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322.


He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., & Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 61(18), 3984–3987.


Honary, S., Gharaei-Fathabad, E., Paji, Z. K., & Eslamifar, M. (2012). A novel biological synthesis of gold nanoparticle by Enterobacteriaceae family. Tropical Journal of Pharmaceutical Research, 11(6), 887–891.


Huang, Z., Zeng, Z., Chen, A., Zeng, G., Xiao, R., Xu, P., He, K., Song, Z., Hu, L., Peng, M., Huang, T., & Chen, G. (2018). Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere, 203, 199–208.


Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes – a review. Colloids and Surfaces B: Biointerfaces, 121, 474–483.


Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84.


Jiang, Z., Zhang, S., Klausen, L. H., Song, J., Li, Q., Wang, Z., Stokke, T. B., Huang, Y., Besenbacher, F., Nielsen, L. P., & Dong, M. (2018). In vitro single-cell dissection revealing the interior structure of cable bacteria. Proceedings of the National Academy of Sciences, 115(34), 8517–8522.


Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B, Biointerfaces, 65(1), 150–153.


Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 77(2), 257–262.


Kang, F., Qu, X., Alvarez, P. J., & Zhu, D. (2017). Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial surfaces. Environmental Science and Technology, 51(5), 2776–2785.


Karakoti, A. S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G., Pounds, J. G., Teeguarden, J. G., Thrall, B. D., & Baer, D. R. (2012). Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surface and Interface Analysis, Surface and Interface Analysis, 44(8), 882–889.


Katz, A., Alimova, A., Xu, M., Rudolph, E., Shah, M. K., Savage, H. E., Rosen, R. B., McCormick, S. A., & Alfano, R. R. (2003). Bacteria size determination by light scattering. IEEE Journal of Selected Topics in Quantum Electronics, 9(2), 277–287.


Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C-Y., Kim, Y. K., Lee, Y-S., Jeong, D. H., & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.


Kimber, R. L., Lewis, E. A., Parmeggiani, F., Smith, K., Bagshaw, H., Starborg, T., Smith, K., Joshi, N., Figueroa, A. I., Van der Laan, G., Cibin, G., Gianolio, D., Haigh, S. J., Pattrick, R., Turner, N. J., & Lloyd, J. R. (2018). Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: Application for click chemistry. Small, 14(10), 1703145.


Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611–13614.


Kozik, V. V., Shcherbakov, A. B., Ivanova, O. S., Spivak, N. Y., & Ivanov, V. K. (2016). Synthesis and biomedical applications of nanodispersed cerium dioxide. Izdatelskiy Dom Tomskogo Gosudarstvennogo Universiteta, Tomsk.


Li, J., Tian, B., Li, T., Dai, S., Weng, Y., Lu, J., Xu, X., Jin, Y., Pang, R., & Hua, Y. (2018). Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. International Journal of Nanomedicine, 13, 1411.


Li, L., Hu, Q., Zeng, J., Qi, H., & Zhuang, G. (2011). Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. Journal of Environmental Sciences, 23(1), 108–111.


Li, M., & Zhang, C. (2016). γ-Fe2O3 nanoparticle-facilitated bisphenol A degradation by white rot fungus. Science Bulletin, 61(6), 468–472.


Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011b). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 270974.


Lin, Y., Ren, J., & Qu, X. (2014). Nano-gold as artificial enzymes: Hidden talents. Advanced Materials, 26(25), 4200–4217.


Liu, B., Sun, Z., Huang, P. J. J., & Liu, J. (2015). Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. Journal of the American Chemical Society, 137(3), 1290–1295.


Liu, W., Tian, S., Zhao, X., Xie, W., Gong, Y., & Zhao, D. (2015а). Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: A critical review. Current Pollution Reports, 1, 280–291.


Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., Tam, P. K., Chiu, J. F., & Che, C. M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4), 916–924.


Lu, L., Wang, X., Xiong, C., & Yao, L. (2015). Recent advances in biological detection with magnetic nanoparticles as a useful tool. Science China Chemistry, 58(5), 793–809.


Lv, Q., Zhang, B., Xing, X., Zhao, Y., Cai, R., Wang, W., & Gu, Q. (2018). Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. Journal of Hazardous Materials, 347, 141–149.


Lyubchenko, Y. L., & Shlyakhtenko, L. S. (1997). Visualization of supercoiled DNA with atomic force microscopy in situ. Proceedings of the National Academy of Sciences, 94(2), 496–501.


Manoj, D., Saravanan, R., Santhanalakshmi, J., Agarwal, S., Gupta, V. K., & Boukherroub, R. (2018). Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor. Sensors and Actuators B, Chemical, 266, 873–882.


Martins, M., Mourato, C., Sanches, S., Noronha, J. P., Crespo, M. B., & Pereira, I. A. (2017). Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Research, 108, 160–168.


Matsumura, Y., Yoshikata, K., Kunisaki, S. I., & Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69(7), 4278–4281.


Mekkawy, A. I., El-Mokhtar, M. A., Nafady, N. A., Yousef, N., Hamad, M. A., El-Shanawany, S. M., Ibrahim, E. H., & Elsabahy, M. (2017). In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. International Journal of Nanomedicine, 12, 759.


Mesbahi-Nowrouzi, M., & Mollania, N. (2018). Purification of selenate reductase from Alcaligenes sp. CKCr-6A with the ability to biosynthesis of selenium nanoparticle: Enzymatic behavior study in imidazolium based ionic liquids and organic solvent. Journal of Molecular Liquids, 249, 1254–1262.


Mikityuk, M. V. (2011). Nanoparticles and prospects for their application in biology and medicine. Problemy Ekolohii ta Medytsyny, 15(5–6), 41–49.


Mohanasrinivasan, V., Devi, C. S., Mehra, A., Prakash, S., Agarwal, A., Selvarajan, E., & Naine, S. J. (2018). Biosynthesis of MgO nanoparticles using Lactobacillus sp. and its activity against human leukemia cell lines HL-60. BioNanoScience, 8(1), 249–253.


Mokhtari, N., Daneshpajouh, S., Seyedbagheri, S., Atashdehghan, R., Abdi, K., Sarkar, S., Minaian, S., Shahverdi, H. R., & Shahverdi, A. R. (2009). Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Materials Research Bulletin, 44(6), 1415–1421.


Mu, X., Wang, J., Li, Y., Xu, F., Long, W., Ouyang, L., Liu, Y., Jing, Y., Wang, J., Dai, H., Liu, Q., Sun, Y., Liu, C., & Zhang, X.-D. (2019). Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano, 13(2), 1870–1884.


Mueller, C. F., Laude, K., McNally, J. S., & Harrison, D. G. (2005). Redox mechanisms in blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(2), 274–278.


Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1(3), 169.


Naim, M. M., El-Shafei, A. A., Elewa, M. M., & Moneer, A. A. (2016). Application of silver-, iron-, and chitosan-nanoparticles in wastewater treatment. International Conference on Desalination for the Environment: Clean Water and Energy, 73, 268–280.


Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8(1), 39.


Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.


Nasrollahzadeh, M., Sajadi, S. M., Issaabadi, Z., & Sajjadi, M. (2019). Biological Sources Used in Green Nanotechnology. Interface Science and Technology, 28, 81–111.


Ovais, M., Khalil, A. T., Raza, A., Islam, N. U., Ayaz, M., Saravanan, M., Ali, M., Ahmad, I., Shahid, M., & Shinwari, Z. K. (2018a). Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Applied Microbiology and Biotechnology, 102(10), 4393–4408.


Ovais, M., Zia, N., Ahmad, I., Khalil, A. T., Raza, A., Ayaz, M., Sadiq, A., Ullah, F., & Shinwari, Z. K. (2018b). Phyto-therapeutic and nanomedicinal approaches to cure alzheimer’s disease: Present status and future opportunities. Frontiers in Aging Neuroscience, 10, 284.


Pal, G., Rai, P., & Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Shukla, A. K., & Iravani, S. (Eds.). Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier. Pp. 1–26.


Pantopoulos, K., & Schipper, H. M. (2012). Principles of free radical biomedicine. Nova Science Publications, Hauppauge.


Parada, J., Rubilar, O., Diez, M. C., Cea, M., da Silva, A. S. A., Rodríguez-Rodríguez, C. E., & Tortella, G. R. (2019). Combined pollution of copper nanoparticles and atrazine in soil: Effects on dissipation of the pesticide and on microbiological community profiles. Journal of Hazardous Materials, 361, 228–236.


Patanjali, P., Singh, R., Kumar, A., & Chaudhary, P. (2019). Nanotechnology for water treatment: A green approach. In: Shukla, A. K., & Iravani, S. (Eds.). Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier. Pp. 485–512.


Presentato, A., Piacenza, E., Anikovskiy, M., Cappelletti, M., Zannoni, D., & Turner, R. J. (2018). Biosynthesis of selenium-nanoparticles and-nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnology, 41, 1–8.


Rad, M., Taran, M., & Alavi, M. (2018). Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomedicine and Engineering, 10(1), 25–33.


Ramezani, F., Ramezani, M., & Talebi, S. (2010). Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nanocon, 10(12–14), 1–7.


Rauscher, H., Sokull-Klüttgen, B., & Stamm, H. (2012) The European Commission’s recommendation on the definition of nanomaterial makes an impact. Nanotoxicology, 7, 1195–1197.


Rautela, A., Rani, J., & Das, M. D. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10(1), 5.


Reverberi, A. P., Vocciante, M., Lunghi, E., Pietrelli, L., & Fabiano, B. (2017). New trends in the synthesis of nanoparticles by green methods. Chemical Engineering Transactions, 61, 667–672.


San Diego, K. D., Alindayu, J. I. A., & Baculi, R. Q. (2019). Biosynthesis of gold nanoparticles by bacteria from hyperalkaline spring and evaluation of their inhibitory activity against pyocyanin production. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 781–787.


Sanjay, S. S. (2019). Safe nano is green nano. In: Shukla, A. K., & Iravani, S. (Eds.). Green synthesis, characterization and applications of nanoparticles. Elsevier. Pp. 27–36.


Schlüter, M., Hentzel, T., Suarez, C., Koch, M., Lorenz, W. G., Böhm, L., Düring, R. A., Koinig, K. A., & Bunge, M. (2014). Synthesis of novel palladium (0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere, 117, 462–470.


Seifan, M., Ebrahiminezhad, A., Ghasemi, Y., Samani, A. K., & Berenjian, A. (2018). The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Applied Microbiology and Biotechnology, 102(8), 3595–3606.


Selvakannan, P. R., Ramanathan, R., Plowman, B. J., Sabri, Y. M., Daima, H. K., O'Mullane, A. P., Bansal, V., & Bhargava, S. K. (2013). Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates. Physical Chemistry Chemical Physics, 15(31), 12920–12929.


Selvakannan, P. R., Swami, A., Srisathiyanarayanan, D., Shirude, P. S., Pasricha, R., Mandale, A. B., & Sastry, M. (2004). Synthesis of aqueous Au core – Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air – water interface. Langmuir, 20(18), 7825–7836.


Selvarajan, E., & Mohanasrinivasan, V. (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters, 112, 180–182.


Shah, J. H., Fiaz, M., Athar, M., Ali, J., Rubab, M., Mehmood, R., Jamil, S. U. U., & Djellabi, R. (2019). Facile synthesis of N/B-double-doped Mn2O3 and WO3 nanoparticles for dye degradation under visible light. Environmental Technology, 2019, 1–10.


Shakibaie, M., Amiri-Moghadam, P., Ghazanfari, M., Adeli-Sardou, M., Jafari, M., & Forootanfar, H. (2018). Cytotoxic and antioxidant activity of the biogenic bismuth nanoparticles produced by Delftia sp. SFG. Materials Research Bulletin, 104, 155–163.


Shankar, P. D., Shobana, S., Karuppusamy, I., Pugazhendhi, A., Ramkumar, V. S., Arvindnarayan, S., & Kumar, G. (2016). A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 95, 28–44.


Shankar, S., Soni, S. K., Daima, H. K., Selvakannan, P. R., Khire, J. M., Bhargava, S. K., & Bansal, V. (2015). Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Physical Chemistry Chemical Physics, 17(33), 21517–21524.


Sharma, K. D. (2017). Antifungal activity of biogenic platinum nanoparticles: An in vitro study. International Journal of Current Microbiology and Applied Sciences, 6(4), 334–340.


Shin, D. S., DiDonato, M., Barondeau, D. P., Hura, G. L., Hitomi, C., Berglund, J. A., & Tainer, J. A. (2009). Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: Structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Journal of Molecular Biology, 385(5), 1534–1555.


Si, S., & Mandal, T. K. (2007). Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study. Chemistry – A European Journal, 13(11), 3160–3168.


Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1), 14.


Singaravelu, G., Arockiamary, J. S., Kumar, V. G., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 57(1), 97–101.


Singh, O. V. (Ed.). (2015). Bio-nanoparticles: Biosynthesis and sustainable biotechnological implications. John Wiley & Sons.


Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.


Singh, S., Kumar, V., Romero, R., Sharma, K., & Singh, J. (2019). Applications of nanoparticles in wastewater treatment. In: Nanobiotechnology in bioformulations. Springer, Cham. Pp. 395–418.


Singh, V. K., & Singh, A. K. (2019). Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management. In: Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Woodhead Publishing. Pp. 55–73.


Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., & Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84(4), 741–749.


Stoller, M., Di Palma, L., Vuppala, S., Verdone, N., & Vilardi, G. (2018). Process intensification techniques for the production of nano-and submicronic particles for food and medical applications. Current Pharmaceutical Design, 24(21), 2329–2338.


Taran, M., Rad, M., & Alavi, M. (2017). Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by Bacillus sp. FU4: Optimization of experiment design. Pharmaceutical Sciences, 23(3), 198–206.


Temerk, Y., & Ibrahim, H. (2016). A new sensor based on In doped CeO2 nanoparticles modified glassy carbon paste electrode for sensitive determination of uric acid in biological fluids. Sensors and Actuators B: Chemical, 224, 868–877.


Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(2), 257–262.


Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In: Shukla, A. K., & Iravani, S. (Eds.). Green synthesis, characterization and applications of nanoparticles. Elsevier. Pp. 303–319.


Tomer, A. K., Rahi, T., Neelam, D. K., & Dadheech, P. K. (2019). Cyanobacterial extract-mediated synthesis of silver nanoparticles and their application in ammonia sensing. International Microbiology, 22(1), 49–58.


Touyz, R. M. (2005). Molecular and cellular mechanisms in vascular injury in hypertension: Role of angiotensin II – editorial review. Current Opinion in Nephrology and Hypertension, 14(2), 125–131.


Tsekhmistrenko, O. S., Tsekhmistrenko, S. I., Bityutskyy, V. S., Melnichenko, O. M., Oleshko, O. A. (2018а). Biomimetic and antioxidant activity of nano-crystalline cerium dioxide. World of Medicine and Biology, 63, 196–201.


Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Polishchuk, V. M., Polishchuk, S. A., Ponomarenko, N. V., Melnychenko, Y. O., & Spivak, M. Y. (2018). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems, 9(3), 469–476.


Tsekhmistrenko, O. S., Bityutskyy, V. S., Tsekhmistrenko, S. I., Melnichenko, О. М., Tymoshok, N. O., & Spivak, M. Y. (2019). Use of nanoparticles of metals and non-metals in poultry farming. Animal Husbandry Products Production and Processing, 2, 113–130.


Tymoshok, N. O., Kharchuk, M. S., Kaplunenko, V. G., Bityutskyy, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, O. S., Spivak, M. Y., & Melnichenko, О. М. (2019). Evaluation of effects of selenium nanoparticles on Bacillus subtilis. Regulatory Mechanisms in Biosystems, 10(4), 544–552.


Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S. R. K., & Gurunathan, S. (2010). Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids and Surfaces B: Biointerfaces, 75(1), 335–341.


Valko, M., Rhodes, C., Moncol, J., Izakovic, M. M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1–40.


Venil, C. K., Sathishkumar, P., Malathi, M., Usha, R., Jayakumar, R., Yusoff, A. R. M., & Ahmad, W. A. (2016). Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Materials Science and Engineering: C, 59, 228–234.


Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2018). Biosynthesis of gold and selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme and Microbial Technology, 111, 81–86.


Walkey, D. G. (2018). Virus diseases. Onions and allied crops. Volume 2. Agronomy Biotic Interactions. CRC Press, Taylor & Francis Group.


Walser, T., Limbach, L. K., Brogioli, R., Erismann, E., Flamigni, L., Hattendorf, B., Juchli, M., Krumeich, F., Ludwig, C., Prikopsky, K., Rossier, M., Saner, D., Sigg, A., Hellweg, S., Günther, D., & Stark, W. J. (2012). Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nature Nanotechnology, 7(8), 520.


Wang, L., Ali, J., Zhang, C., Mailhot, G., & Pan, G. (2017). Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. Journal of Environmental Chemical Engineering, 2017, 102104.


Wang, L., Miao, X., Ali, J., Lyu, T., & Pan, G. (2018a). Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment. ACS Omega, 3(9), 10624–10630.


Wang, W., Zhang, B., Liu, Q., Du, P., Liu, W., & He, Z. (2018b). Biosynthesis of palladium nanoparticles using Shewanella loihica PV-4 for excellent catalytic reduction of chromium (VI). Environmental Science: Nano, 5(3), 730–739.


Wang, X., Zhang, D., Pan, X., Lee, D. J., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2017а). Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere, 170, 266–273.


Wang, Z., Li, Q., Chen, Y., Cui, B., Li, Y., Besenbacher, F., & Dong, M. (2018c). The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Materials, 10(8), 703.


Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093.


Wu, H., Yin, J. J., Wamer, W. G., Zeng, M., & Lo, Y. M. (2014). Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis, 22(1), 86–94.


Wu, R., Tian, X., Xiao, Y., Ulstrup, J., Christensen, H. E. M., Zhao, F., & Zhang, J. (2018). Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on Shewanella oneidensis MR-1. Journal of Materials Chemistry A, 6(23), 10655–10662.


Wu, W., Huang, H., Ling, Z., Yu, Z., Jiang, Y., Liu, P., & Li, X. (2016). Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. Ecotoxicology, 25(1), 234–247.


Xia, X., Wu, S., Li, N., Wang, D., Zheng, S., & Wang, G. (2018). Novel bacterial selenite reductase CsrF responsible for Se (IV) and Cr (VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. Journal of Hazardous Materials, 342, 499–509.


Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., Nikzamir, N., Akbarzadeh, A., Panahi, Y., & Milani, M. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 336–343.


Yates, M. D., Cusick, R. D., & Logan, B. E. (2013). Extracellular palladium nanoparticle production using Geobacter sulfurreducens. Acs Sustainable Chemistry and Engineering, 1(9), 1165–1171.


Yin, Y., Yang, X., Hu, L., Tan, Z., Zhao, L., Zhang, Z., Liu, J., & Jiang, G. (2016). Superoxide-mediated extracellular biosynthesis of silver nanoparticles by the fungus Fusarium oxysporum. Environmental Science and Technology Letters, 3(4), 160–165.


Yurtluk, T., Akçay, F. A., & Avci, A. (2018). Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8. Preparative Biochemistry and Biotechnology, 48(2), 151–159.


Zakaria, H. M., Shah, A., Konieczny, M., Hoffmann, J. A., Nijdam, A. J., & Reeves, M. E. (2013). Small molecule-and amino acid-induced aggregation of gold nanoparticles. Langmuir, 29(25), 7661–7673.


Zhang, H., & Hu, X. (2017). Rapid production of Pd nanoparticle by a marine electrochemically active bacterium Shewanella sp. CNZ-1 and its catalytic performance on 4-nitrophenol reduction. RSC Advances, 7(65), 41182–41189.


Zhang, H., & Hu, X. (2018). Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction. Enzyme and Microbial Technology, 113, 59–66.


Zhang, Y., Qiang, L., Yuan, Y., Wu, W., Sun, B., & Zhu, L. (2018). Impacts of titanium dioxide nanoparticles on transformation of silver nanoparticles in aquatic environments. Environmental Science: Nano, 5(5), 1191–1199.


Zhu, Y., Ren, B., Li, H., Lin, Z., Bañuelos, G., Li, L., Zhao, G., & Guo, Y. (2018). Biosynthesis of selenium nanoparticles and effects of selenite, selenate, and selenomethionine on cell growth and morphology in Rahnella aquatilis HX2. Applied Microbiology and Biotechnology, 2(14), 6191–6205.

Published
2020-03-02
Section
Articles