Genetic structure of rainbow trout Oncorhynchus mykiss (Salmoniformes, Salmonidae) from aquaculture by DNA-markers

  • О. Y. Bielikova Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine
  • A. E. Mariutsa Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine
  • A. I. Mruk Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine
  • S. I. Tarasjuk Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine
  • V. M. Romanenko National University of Food Technologies
Keywords: fish population genetics; ISSR-PCR; microsatellite marker; genetic polymorphism; population structure.

Abstract

The rational use of valuable fish species from aquaculture is difficult to implement without knowledge of the state of the genetic structure of local stocks. Different types of DNA markers can be used to achieve the goals of selection and breeding work. The genetic structure of a local stock of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) (Salmoniformes, Salmonidae) farmed in Ukraine was studied using DNA-markers: microsatellite (SSR-markers – simple-sequence repeats-markers) and intermicrosatellite (ISSR – inter-simple sequence repeat). Five fragments of trinucleotide microsatellite motifs with a single anchor nucleotide at the 3'-end were used as a primer for analysis by the ISSR-PCR method. Totally, 85 amplicons were obtained across the five loci, of which 92.9% were polymorphic. The total number of alleles ranged from 10 (marker (ACC)₆G) to 23 (marker (AGC)₆G). The following monomorphic amplicons were determined for the studied local stock of rainbow trout: according to marker (CTC)₆C – 770 and 520 bp bands, for the marker (GAG)₆C – 345, 295 and 260 bp, and for the marker (AGC)₆C – 350 bp. The average number of polymorphic bands per locus was 15.8. The selected ISSR primers had a level of polymorphic information content above the average. The most effective markers for molecular-genetic analysis of rainbow trout were (AGC)₆G and (AGC)₆C according to the percentage of polymorphic bands, marker index, effective multiplex ratio and resolving power. The selected ISSR loci allow the genetic structure of the studied local stock to be characterized using the total and the effective number of alleles per locus (Na and Ne were 1.9 and 1.4, respectively), the Shannon index (average value I was 0.4) and the unbiased expected heterozygosity (mean uHe = 0.3). Microsatellite-based analysis showed features of the genetic structure of the local stock of rainbow trout at six microsatellite loci (OMM 1032, OMM 1077, OMM 1088, Str 15, Str 60, Str 73). Allelic diversity was established and alleles with the highest frequency and most typical for the given stock were identified. The Shannon index and unbiased expected heterozygosity were determined using SSR-markers and were 1.42 and 0.79, respectively. This depicts the complexity of the population structure, a high level of genetic diversity and indicates a high level of heterozygosity of local stock. The “gene pool profile” established as a result of ISSR-PCR in the future will help to differentiate local stocks of rainbow trout in aquaculture of Ukraine. Microsatellite markers provide the ability to determine individual features of genetic variation of local populations and to conduct the management of genetic resources on fish farms.

References

Abadía-Cardoso, A., Pearse, D. E., Jacobson, S., Marshall, J., Dalrymple, D., Kawasaki, F., Ruiz-Campos, G., & Garza, J. C. (2016). Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America. Conservation Genetics, 17(3), 675–689.

Abu-Almaaty, A. H., Hassan, M. K., Bahgat, I. M., & Suleiman, M. E. E. (2017). Inter simple sequence repeat (ISSR) and cytogenetic analysis of three fish species of family Osphronemidae. Egyptian Journal of Aquatic Biology and Fisheries, 21(2), 1–15.

Abuzayed, M., El-Dabba, N., Frary, A., & Doganlar, S. (2016). GDdom: An online tool for calculation of dominant marker gene diversity. Biochemical Genetics, 55(2), 155–157.

Barat, A., Sahoo, P. K., Kumar, R., Mir, J. I., Ali, S., Patiyal, R. S., & Singh, A. K. (2015). Molecular characterization of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) stocks in India. Journal of Genetics, 94(S2), 13–18.

Bielikova, O. Y., Zaloilo, O., Тarasjuk, S., Mruk, A., & Romanenko, V. (2019). Henetychna struktura raiduzhnoi foreli (Oncorhynchus mykiss) chernivetskoho lokalnoho stada za SSR-markeramy [Genetic structure of the Chernivtsi local stock of rainbow trout (Oncorhynchus mykiss) as determined by SSR-markers]. Faktori Eksperimental’noi Evolucii Organizmiv, 25, 26–31 (in Ukrainian).

Chesnokov, Y. V., & Artemyeva, A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, 50(5), 571–578.

Chiu, T.-H., Su, Y.-C., Lin, H.-C., & Hsu, C.-K. (2012). Molecular electrophoretic technique for authentication of the fish genetic diversity. In: Magdeldin, S. (Ed.). Gel electrophoresis – advanced techniques. InTech, Rijeka. Pp. 83–96.

Dubin, O. V. (2012). Amplifikatsiia mizhmikrosatelitnykh poslidovnostei yak metod otsiniuvannia polimorfizmu populiatsii azovskoi sevriuhy [Amplification of intermicrosatellite sequences as a method of estimating polymorphism of the Azov sturgeon population]. Bulletin of Zhytomyr National Agroecological University, 2(1), 129–133 (in Ukrainian).

Egorova, K. I., Glazko, V. I., Shumilina, A. R., Kosovkiy, G. Y. (2018). Geneticheskaya struktura trekhporodnogo krossa po sravneniyu s iskhodnymi porodami krolika [Genetic structure of three-way cross of rabbits in comparison with parental breeds]. Agrarian Scientific Journal, 6, 7–10 (in Russian).

Estoup, A., Presa, P., Krieg, F., Vaiman, D., & Guyomard, R. (1993). (CT) and (GT) microsatellites: A new class of genetic markers for Salmo trutta L. (brown trout). Heredity, 71, 488–496.

Faccenda, F., Lunelli, F., Gandolfi, A., & Bozzi, R. (2018). Microsatellite-based genetic diversity and admixture history of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) stocks in Trentino (Italy). Turkish Journal of Fisheries and Aquatic Sciences, 18(7), 881–889.

Hrytsyniak, I., Mariutsa, A., & Tarasyuk, S. (2015). Henetychna struktura okremykh pleminnykh stad strokatoho tovstolobyka [The genetic structure of individual groups of bighead carp (Hypophtalmichthys nobilis)]. Fisheries Science of Ukraine, 32, 41–50 (in Ukrainian).

Komarova, L. V., Kostitsyna, N. V., Boronnikova, S. V., & Melnikova, A. G. (2018). Genetic structure of natural populations of sterlet (Acipenser ruthenus L.) in the catchment basins of the Kama and Ob rivers based on polymorphic ISSR markers. Agricultural Biology, 53(2), 337–347.

Labastida, E., Cobián, D., Hénaut, Y., del Carmen García-Rivas, M., Chevalier, P. P., & MacHkour-M’rabet, S. (2015). The use of ISSR markers for species determination and a genetic study of the invasive lionfish in Guanahacabibes, Cuba. Latin American Journal of Aquatic Research, 43(5), 1011–1018.

Ly, T. T. M., & Yen, D. T. (2019). Differentiation of two Pangasius species, Pangasius krempfi and Pangasius mekongensis using inter-simple sequence repeat markers. International Journal of Fisheries and Aquatic Studies, 7(4), 116–120.

Mariutsa, А., Tarasjuk, S., & Hrytsyniak, І. (2016). Analiz henetychnoi struktury okremykh typiv ukrainskoho luskatoho koropa [Analysis of the genetic stucture of certain types of scaled carp]. Ribogospodars’ka Nauka Ukraïni, 38, 113–122 (in Ukrainian).

Melnikova, M. N., Senchukova, A. L., & Pavlov, S. D. (2014). Introduction of ISSR markers for Kamchatka mykiss (Parasalmo (Oncorhynchus) mykiss) (Walbaum) (Salmonidae, Salmoniformes). Doklady Biochemistry and Biophysics, 459(1), 209–213.

Nagy, S., Poczai, P., Cernák, I., Gorji, A. M., Hegedűs, G., & Taller, J. (2012). PICcalc: An online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genetics, 50, 670–672.

Nahorniuk, T. A., Zaloilo, O. V., & Tarasiuk, S. I. (2013). Analiz henetychnoi struktury koropa antoninsko-zozulenetskoho typu [Analysis of the genetic structure of Antonin-Zozulen type carp]. Visnyk Agrarnoi Nauky, 9, 36–40 (in Ukrainian).

Olubunmi, O. O. (2019). Application of microsatellite in fish biotechnology: Prospects and drawback – review. International Journal of Bioengineering and Biotechnology, 4(3), 37–43.

Peakall, R., & Smouse, P. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537–2539.

Peakall, R., & Smouse, P. E. (2006). Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.

Perfilyeva, A. V., Mynbayeva, B. N., Tanybaeva, A. K., Myzdybaeva, K. K., Ualiyeva, D. A., Abdikarym, S. E., & Bekmanov, B. О. (2018). Molecular and genetic characteristics of Kazakhstanі Rainbow trout with ISSR-PCR analaysis. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Biological and Medical, 325, 44–50.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3), 225–238.

Presa, P., & Guyomard, R. (1996). Conservation of microsatellites in three species of salmonids. Journal of Fish Biology, 49(6), 1326–1329.

Prevost, A., & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98(1), 107–112.

Reddy, P. M., Sarla, N., & Siddiq, E. A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128(1), 9–17.

Rexroad, C. E., Coleman, R. L., Hershberger, W. K., & Killefer, J. (2002). Rapid communication: Thirty-eight polymorphic microsatellite markers for mapping in rainbow trout. Journal of Animal Science, 80(2), 541–542.

Saad, Y. M., AbuZinadah, O. A. H., & El-Domyati, F. (2013). Monitoring of genetic diversity in some parrotfish species based on inter simple sequence repeats polymorphism. Life Science Journal, 10(44), 1841–1846.

Saad, Y. M., Rashed, M. A., Atta, A. H., & Ahmed, N. (2012). Genetic diversity among some tilapia species based on ISSR markers. Life Science Journal, 9(4), 4841–4846.

Stolpovskii, Y. A., Lazebny, O. E., Stolpovskii, K. Y., & Sulimova, G. E. (2010). The use of the ISSR-PCR method for identifying domesticated animal breeds and species, inferring their population stuctures, and assessing gene pool similarity. Russian Journal of Genetics, 46(6), 732–739.

Sulimova, G., Kol, N., Rusina, M., Stolpovsky, K., Voronkova, V., Boyarintseva, I., & Stolpovsky, Y. (2011). Razrabotka universal’nogo metoda ocenki geneticheskogo raznoobraziya i pasportizacii porod i populyacij domesticirovannyh vidov zhivotnyh [Development of a universal method for estimation of genetic diversity and certification of domesticated animal species and populations]. Molekulyarnaya i Prikladnaya Genetika, 12, 19–27 (in Russian).

Yeh, F. C., & Boyle, T. J. B. (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 129, 157–163.

Yusufzai, S. I., Padhiyar Shital, M., Smit, L., Tomar Rukam, S., Thummar Vibha, D., Thakkar Jalpa, R., Rathod Visha, M., Kheni Jasmin, V., Vishal, K., Parakhia, M. V., & Golakiya, B. A. (2016). Genetic diversity analysis in some marine fish species of Gujarat coast through morphological and molecular markers. Research Journal of Biotechnology, 11(3), 77–84.

Published
2021-02-17
Section
Articles