Soluble curcumin ameliorates motility, adhesiveness and abrogate parthanatos in cadmium-exposed retinal pigment epithelial cells

  • V. S. Nedzvetsky Bingöl University
  • V. Y. Gasso Oles Honchar Dnipro National University
  • C. A. Agca Bingöl University
  • E. V. Sukharenko Kerch State Maritime Technological University
Keywords: heavy metal; ecotoxicology; biomarkers; PARP-1; Nrf2; fibronectin; E-cadherin; turmeric extract.

Abstract

Cadmium (Cd) is a nonessential transition metal and one of the most toxic environmental pollutants. Industrial, agricultural and urban activities are the main sources of Cd environmental contamination. Multiple deleterious effects of Cd exposure were reported for different cell types and living organisms in a great number of research papers. Cd bioaccumulation hazard is mediated by the relatively long half-life of this metal in an organism. For example, in mammals its half-life lasts for about 10–30 years. Cd exposure affects many tissues. However, some of them, including the central nervous system and sensory organs, are most susceptible to its toxicity. The harmful effects of Cd could be linked to oxidative stress generation and consequently intracellular signalling disruption. Since Cd induces redox imbalance the antioxidants could be a prospective tool to ameliorate Cd cytotoxicity. In present work, we have studied the protective efficacy of soluble curcumin on Cd-caused retinal pigment epithelium (RPE) cells viability, reactive oxygen species production, adhesive and extracellular matrix proteins expression, cell migration and parthanatos level. Low dose (5 µM) of soluble curcumin ameliorated all aforementioned indices of Cd-induced cytotoxicity. Curcumin has restored the RPE cells motility as well as fibronectin and E-cadherin expression. Therefore, the modulation of RPE adhesiveness could be regarded as a cytoprotective effect of curcumin. Furthermore, Cd-caused poly(ADP-ribose) polymerase-1 (PARP-1) suppression and cleaved PARP-1 upregulation were ameliorated by curcumin exposure. Therefore, the protective effect of soluble curcumin could be related, at least partially, to the modulation of PARP activity and inhibition of parthanatos flux. The observed results have demonstrated that low doses of soluble curcumin are a promising tool to protect RPE cells against Cd-caused retinal injury.

References

Aberami, S., Nikhalashree, S., Bharathselvi, M., Biswas, J., Sulochana, K. N., & Coral, K. (2019). Elemental concentrations in Choroid-Rpe and retina of human eyes with age-related macular degeneration. Experimental Eye Research, 186, 107718.

Acan, N. L., & Tezcan, E. F. (1995). Inhibition kinetics of sheep brain glutathione reductase by cadmium ion. Biochemical and Molecular Medicine, 54(1), 33–37.

Ağca, C. A. (2019). Homocysteine-induced damage of cultured glioblastoma cells: Amelioration by curcumin. Neurophysiology, 51(6), 416–423.

Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: The Indian solid gold. Advances in Experimental Medicine and Biology, 595, 1–75.

Al-Jassabi, S., Ahmed, K. A., & Abdulla, M. A. (2012). Antioxidant effect of curcumin against microcystin-LR-induced renal oxidative damage in Balb/c mice. Tropical Journal of Pharmaceutical Research, 11(4), 531–536.

Anto, R. J., Mukhopadhyay, A., Denning, K., & Aggarwal, B. B. (2002). Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 23(1), 143–150.

Bai, P. (2015). Biology of poly(ADP-ribose) polymerases: The factotums of cell maintenance. Molecular Cell, 58(6), 947–958.

Baiomy, A. A., & Mansour, A. A. (2016). Genetic and histopathological responses to cadmium toxicity in rabbit’s kidney and liver: protection by ginger (Zingiber officinale). Biological Trace Element Research, 170(2), 320–329.

Barbosa-Sabanero, K., Hoffmann, A., Judge, C., Lightcap, N., Tsonis, P. A., & Del Rio-Tsonis, K. (2012). Lens and retina regeneration: New perspectives from model organisms. Biochemical Journal, 447(3), 321–334.

Basnet, P., & Skalko-Basnet, N. (2011). Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 16(6), 4567–4598.

Bereswill, S., Muñoz, M., Fischer, A., Plickert, R., Haag, L. M., Otto, B., Kühl, A., Loddenkemper, C., Göbel, U., & Heimesaat, M. M. (2010). Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PloS One, 5(12), e15099.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

Branca, J. J. V., Morucci, G., & Pacini, A. (2018). Cadmium-induced neurotoxicity: Still much ado. Neural Regeneration Research, 13(11), 1879–1882.

Chen, L., Liu, L., & Huang, S. (2008). Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radical Biology and Medicine, 45(7), 1035–1044.

Chen, Z., Xue, J., Shen, T., Ba, G., Yu, D., & Fu, Q. (2016). Curcumin alleviates glucocorticoid‐induced osteoporosis by protecting osteoblasts from apoptosis in vivo and in vitro. Clinical and Experimental Pharmacology and Physiology, 43(2), 268–276.

Choi, Y. E., & Park, E. (2015). Curcumin enhances poly(ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells. The Journal of Nutritional Biochemistry, 26(12), 1442–1447.

Cornet, V., Ouaach, A., Mandiki, S. N. M., Flamion, E., Ferain, A., Van Larebeke, M., Lemaire, B., Reyes López, F. E., Tort, L., Larondelle, Y., & Kestemont, P. (2018). Environmentally-realistic concentration of cadmium combined with polyunsaturated fatty acids enriched diets modulated non-specific immunity in rainbow trout. Aquatic Toxicology, 196, 104–116.

Egbowon, B. F., Harris, W., Arnott, G., Mills, C. L., & Hargreaves, A. J. (2016). Sub-lethal concentrations of CdCl2 disrupt cell migration and cytoskeletal proteins in cultured mouse TM4 Sertoli cells. Toxicology in Vitro, 32, 154–165.

Farina, M., Avila, D. S., Da Rocha, J. B. T., & Aschner, M. (2013). Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochemistry International, 62(5), 575–594.

Fattori, V., Pinho-Ribeiro, F. A., Borghi, S. M., Alves-Filho, J. C., Cunha, T. M., Cunha, F. Q., Casagrande, R., & Verri, W. A. (2015). Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. Journal of Inflammation Research, 64(12), 993–1003.

Fujiwara, Y., Lee, J. Y., Tokumoto, M., & Satoh, M. (2012). Cadmium renal toxicity via apoptotic pathways. Biological and Pharmaceutical Bulletin, 35(11), 1892–1897.

García-Niño, W. R., & Pedraza-Chaverrí, J. (2014). Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69, 182–201.

Gulisano, M., Pacini, S., Punzi, T., Morucci, G., Quagliata, S., Delfino, G., Sarchielli, E., Marini, M., & Vannelli, G. B. (2009). Cadmium modulates proliferation and differentiation of human neuroblasts. Journal of Neuroscience Research, 87(1), 228–237.

Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631–1652.

Hollborn, M., Chen, R., Wiedemann, P., Reichenbach, A., Bringmann, A., & Kohen, L. (2013). Cytotoxic effects of curcumin in human retinal pigment epithelial cells. PLoS One, 8(3), e59603.

Huang, Y. C., Chao, K. S., Liao, H. F., & Chen, Y. J. (2013). Targeting sonic hedgehog signaling by compounds and derivatives from natural products. Evidence-Based Complementary and Alternative Medicine, 2013, 748587.

Im, J. Y., Paik, S. G., & Han, P. L. (2006). Cadmium‐induced astroglial death proceeds via glutathione depletion. Journal of Neuroscience Research, 83(2), 301–308.

Järup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208.

Kalariya, N. M., Wills, N. K., Ramana, K. V., Srivastava, S. K., & van Kuijk, F. J. (2009). Cadmium-induced apoptotic death of human retinal pigment epithetlial cells is mediated by MAPK pathway. Experimental Eye Research, 89(4), 494–502.

Kar, F., Hacioglu, C., Uslu, S., & Kanbak, G. (2019). Curcumin acts as post-protective effects on rat hippocampal synaptosomes in a neuronal model of aluminum-induced toxicity. Neurochemical Research, 44(8), 2020–2029.

Kirici, M., Nedzvetsky, V. S., Agca, C. A., & Gasso, V. Y. (2019). Sublethal doses of copper sulphate initiate deregulation of glial cytoskeleton, NF-kB and PARP expression in Capoeta umbla brain tissue. Regulatory Mechanisms in Biosystems, 10(1), 103–110.

Klettner, A. (2012). Oxidative stress induced cellular signaling in RPE cells. Frontiers in Bioscience, 4(2), 392–411.

Kolluru, G. K., Tamilarasan, K. P., Priya, S. G., Durgha, N. P., & Chatterjee, S. (2006). Cadmium induced endothelial dysfunction: consequence of defective migratory pattern of endothelial cells in association with poor nitric oxide availability under cadmium challenge. Cell Biology International, 30(5), 427–438.

Kushwaha, R., Mishra, J., Tripathi, S., Khare, P., & Bandyopadhyay, S. (2018). Arsenic, cadmium, and lead like troglitazone trigger PPARγ-dependent poly (ADP-ribose) polymerase expression and subsequent apoptosis in rat brain astrocytes. Molecular Neurobiology, 55(3), 2125–2149.

Kutluay, S. B., Doroghazi, J., Roemer, M. E., & Triezenberg, S. J. (2008). Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology, 373(2), 239–247.

Lee, J. Y., Tokumoto, M., Hattori, Y., Fujiwara, Y., Shimada, A., & Satoh, M. (2016). Different regulation of p53 expression by cadmium exposure in kidney, liver, intestine, vasculature, and brain astrocytes. Toxicological Research, 32(1), 73–80.

Liu, F., Wang, B., Li, L., Dong, F., Chen, X., Li, Y., Dong, X., Wada, Y., Kapron, C., & Liu, J. (2015). Low-dose cadmium upregulates VEGF expression in lung adenocarcinoma cells. International Journal of Environmental Research and Public Health, 12(9), 10508–10521.

López-Malo, D., Villarón-Casares, C. A., Alarcón-Jiménez, J., Miranda, M., Díaz-Llopis, M., Romero, F. J., & Villar, V. M. (2020). Curcumin as a therapeutic option in retinal diseases. Antioxidants, 9(1), 48.

Luo, T., Yu, Q., Zou, H., Zhao, H., Gu, J., Yuan, Y., & Liu, Z. (2020). Role of poly (ADP-ribose) polymerase-1 in cadmium-induced cellular DNA damage and cell cycle arrest in rat renal tubular epithelial cell line NRK-52E. Environmental Pollution, 261, 114149.

Luo, T., Yuan, Y., Yu, Q., Liu, G., Long, M., Zhang, K., Bian, J., Gu, J., Zou, H., Wang, Y., Zhu, J., Liu, X., & Liu, Z. (2017). PARP-1 overexpression contributes to cadmium-induced death in rat proximal tubular cells via parthanatos and the MAPK signalling pathway. Scientific Reports, 7(1), 1–13.

Ma, D., Lu, B., Feng, C., Wang, C., Wang, Y., Luo, T., Feng, J., Jia, H., Chi, G., Luo, Y., & Ge, P. (2016). Deoxypodophyllotoxin triggers parthanatos in glioma cells via induction of excessive ROS. Cancer Letters, 371(2), 194–204.

Marlowe, M., Errera, J., & Jacobs, J. (1983). Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. American Journal of Mental Deficiency, 87(5), 477–483.

Mishra, D., Singh, S., & Narayan, G. (2016). Curcumin induces apoptosis in Pre-B acute lymphoblastic leukemia cell lines via PARP-1 cleavage. Asian Pacific Journal of Cancer Prevention, 17(8), 3865–3869.

Mohajeri, M., Rezaee, M., & Sahebkar, A. (2017). Cadmium‐induced toxicity is rescued by curcumin: A review. Biofactors, 43(5), 645–661.

Momeni, H. R., & Eskandari, N. (2020). Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Human and Experimental Toxicology, 39(5), 653–661.

Mori, H., Sasaki, G., Nishikawa, M., & Hara, M. (2015). Effects of subcytotoxic cadmium on morphology of glial fibrillary acidic protein network in astrocytes derived from murine neural stem/progenitor cells. Environmental Toxicology and Pharmacology, 40(2), 639–644.

Muangnoi, C., Sharif, U., Ratnatilaka Na Bhuket, P., Rojsitthisak, P., & Paraoan, L. (2019). Protective effects of curcumin ester prodrug, curcumin diethyl disuccinate against H2O2-induced oxidative stress in human retinal pigment epithelial cells: Potential therapeutic avenues for age-related macular degeneration. International Journal of Molecular Sciences, 20(13), 3367.

Nair, A. R., DeGheselle, O., Smeets, K., Van Kerkhove, E., & Cuypers, A. (2013). Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? International Journal of Molecular Sciences, 14(3), 6116–6143.

Namgyal, D., Ali, S., Mehta, R., & Sarwat, M. (2020). The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology, 442, 152542.

Nedzvetsky, V. S., Agca, C. A., & Kyrychenko, S. V. (2017). Neuroprotective effect of curcumin on LPS-activated astrocytes is related to the prevention of GFAP and NF-κB upregulation. Neurophysiology, 49(4), 305–307.

Nedzvetsky, V. S., Sukharenko, E. V., Baydas, G., & Andrievsky, G. V. (2019). Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats. Regulatory Mechanisms in Biosystems, 10(4), 513–519.

Nedzvetsky, V. S., Sukharenko, E. V., Kyrychenko, S. V., & Baydas, G. (2018). Soluble curcumin prevents cadmium cytotoxicity in primary rat astrocytes by improving a lack of GFAP and glucose-6-phosphate-dehydrogenase. Regulatory Mechanisms in Biosystems, 9(4), 501–507.

Ninkov, M., Aleksandrov, A. P., Demenesku, J., Mirkov, I., Mileusnic, D., Petrovic, A., Grigorov, I., Zolotarevski, L., Tolinacki, M., Kataranovski, D., Brceski, I., & Kataranovski, M. (2015). Toxicity of oral cadmium intake: Impact on gut immunity. Toxicology Letters, 237(2), 89–99.

Ou, L., Wang, H., Wu, Z., Wang, P., Yang, L., Li, X., Sun, K., Zhu, X., & Zhang, R. (2021). Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis. Ecotoxicology and Environmental Safety, 208, 111668.

Pamphlett, R., Cherepanoff, S., Too, L. K., Kum Jew, S., Doble, P. A., & Bishop, D. P. (2020). The distribution of toxic metals in the human retina and optic nerve head: Implications for age-related macular degeneration. PloS One, 15(10), e0241054.

Park, S. I., Lee, E. H., Kim, S. R., & Jang, Y. P. (2017). Anti‐apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light‐induced cytotoxicity in A2E‐laden human retinal pigment epithelial cells. Journal of Pharmacy and Pharmacology, 69(3), 334–340.

Phuagkhaopong, S., Ospondpant, D., Kasemsuk, T., Sibmooh, N., Soodvilai, S., Power, C., & Vivithanaporn, P. (2017). Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology, 60, 82–91.

Pihl, R. O., & Parkes, M. (1977). Hair element content in learning disabled children. Science, 198(4313), 204–206.

Platania, C., Fidilio, A., Lazzara, F., Piazza, C., Geraci, F., Giurdanella, G., Leggio, G. M., Salomone, S., Drago, F., & Bucolo, C. (2018). Retinal protection and distribution of curcumin in vitro and in vivo. Frontiers in Pharmacology, 9, 670.

Poliandri, A. H., Cabilla, J. P., Velardez, M. O., Bodo, C. C., & Duvilanski, B. H. (2003). Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants. Toxicology and Applied Pharmacology, 190(1), 17–24.

Priyadarsini, K. I. (2014). The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 19(12), 20091–20112.

Pulido, G., Treviño, S., Brambila, E., Vazquez-Roque, R., Moreno-Rodriguez, A., Rosas, U. P., Handal, S. A., Guevara, J. F., & Diaz, A. (2019). The administration of cadmium for 2, 3 and 4 months causes a loss of recognition memory, promotes neuronal hypotrophy and apoptosis in the hippocampus of rats. Neurochemical Research, 44(2), 485–497.

Purkayastha, S., Berliner, A., Fernando, S. S., Ranasinghe, B., Ray, I., Tariq, H., & Banerjee, P. (2009). Curcumin blocks brain tumor formation. Brain Research, 1266, 130–138.

Satarug, S., Kikuchi, M., Wisedpanichkij, R., Li, B., Takeda, K., Na-Bangchang, K., Moore, M. R., Hirayama, K., & Shibahara, S. (2008). Prevention of cadmium accumulation in retinal pigment epithelium with manganese and zinc. Experimental Eye Research, 87(6), 587–593.

Schwertheim, S., Wein, F., Lennartz, K., Worm, K., Schmid, K. W., & Sheu-Grabellus, S. Y. (2017). Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells. Journal of Cancer Research and Clinical Oncology, 143(7), 1143–1154.

Shukla, G. S., Hussain, T., Srivastava, R. S., & Chandra, S. V. (1989). Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. Industrial Health, 27(2), 59–69.

So, K. Y., & Oh, S. H. (2016). Cadmium-induced heme-oxygenase-1 expression plays dual roles in autophagy and apoptosis and is regulated by both PKC-δ and PKB/Akt activation in NRK52E kidney cells. Toxicology, 370, 49–59.

Strasser, E. M., Wessner, B., Manhart, N., & Roth, E. (2005). The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells. Biochemical Pharmacology, 70(4), 552–559.

Świergosz‐Kowalewska, R. (2001). Cadmium distribution and toxicity in tissues of small rodents. Microscopy Research and Technique, 55(3), 208–222.

Tajbakhsh, S., Mohammadi, K., Deilami, I., Zandi, K., Fouladvand, M., Ramedani, E., & Asayesh, G. (2008). Antibacterial activity of indium curcumin and indium diacetylcurcumin. African Journal of Biotechnology, 7(21), 3832–3835.

Tandon, S. K., Singh, S., Prasad, S., Khandekar, K., Dwivedi, V. K., Chatterjee, M., & Mathur, N. (2003). Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicology Letters, 145(3), 211–217.

Thatcher, R. W., Lester, M. L., McAlaster, R., & Horst, R. (1982). Effects of low levels of cadmium and lead on cognitive functioning in children. Archives of Environmental Health, 37(3), 159–166.

Tian, S., Lu, L., Zhang, J., Wang, K., Brown, P., He, Z., Liang, L., & Yang, X. (2011). Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 84(1), 63–69.

Tong, W., Wang, Q., Sun, D., & Suo, J. (2016). Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncology Letters, 12(5), 4139–4146.

Van Maele-Fabry, G., Lombaert, N., & Lison, D. (2016). Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: A systematic review and meta-analysis. Environment International, 86, 1–13.

Vanlaeys, A., Fouquet, G., Kischel, P., Hague, F., Pasco-Brassart, S., Lefebvre, T., Rybarczyk, P., Dhennin-Duthille, I., Brassart, B., Ouadid-Ahidouch, H., & Gautier, M. (2020). Cadmium exposure enhances cell migration and invasion through modulated TRPM7 channel expression. Archives of Toxicology, 94(3), 735–747.

Wang, B., & Du, Y. (2013). Cadmium and its neurotoxic effects. Oxidative Medicine and Cellular Longevity, 2013, 898034.

Wang, L., Li, C., Guo, H., Kern, T. S., Huang, K., & Zheng, L. (2011). Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One, 6(8), e23194.

Wang, L., Shen, Y., Song, R., Sun, Y., Xu, J., & Xu, Q. (2009). An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Molecular Pharmacology, 76(6), 1238–1245.

Wang, Y., Wang, X., Zhang, L., & Zhang, R. (2018). Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-kinase/nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (PI3K/Nrf2/HO-1) pathway. Medical Science Monitor, 24, 3604–3611.

Wei, Z., & Shaikh, Z. A. (2017). Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and β-catenin signaling. Toxicology and Applied Pharmacology, 328, 70–80.

Wills, N. K., Kalariya, N., Sadagopa Ramanujam, V. M., Lewis, J. R., Haji Abdollahi, S., Husain, A., & van Kuijk, F. J. G. M. (2009). Human retinal cadmium accumulation as a factor in the etiology of age-related macular degeneration. Experimental Eye Research, 89(1), 79–87.

Woods, J. M., Leone, M., Klosowska, K., Lamar, P. C., Shaknovsky, T. J., & Prozialeck, W. C. (2008). Direct antiangiogenic actions of cadmium on human vascular endothelial cells. Toxicology in Vitro, 22(3), 643–651.

Zhang, F., Lau, S. S., & Monks, T. J. (2012). A dual role for poly(ADP-ribose) polymerase-1 during caspase-dependent apoptosis. Toxicological Sciences, 128(1), 103–114.

Zhang, L., Xia, Q., Zhou, Y., & Li, J. (2019). Endoplasmic reticulum stress and autophagy contribute to cadmium-induced cytotoxicity in retinal pigment epithelial cells. Toxicology Letters, 311, 105–113.

Zhu, L., Han, M. B., Gao, Y., Wang, H., Dai, L., Wen, Y., & Na, L. X. (2015). Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Molecular Medicine Reports, 12(1), 1151–1156.

Published
2021-07-13
Section
Articles