Local taxonomic spectra in plants, animals, fungi and terrestrial protists show common mathematical patterns

  • D. V. Leontyev H. S. Skovoroda Kharkiv National Pedagogical University
  • I. I. Yatsiuk Institute of Ecology and Earth Sciences
  • T. Y. Markina H. S. Skovoroda Kharkiv National Pedagogical University
  • L. P. Kharchenko H. S. Skovoroda Kharkiv National Pedagogical University
  • Е. V. Tverdokhleb H. S. Skovoroda Kharkiv National Pedagogical University
  • I. O. Fedyay Kharkiv State Academy of Physical Culture
  • Y. A. Yatsiuk Institute of Ecology and Earth Sciences
Keywords: Agaricomycetes; Aves; biota; biodiversity; Bryophyta; Coleoptera; distribution fitting; Eumycetozoa; fauna; flora; Insecta; Magnoliophyta; Myxogastrea; Myxomycetes; national park; nature conservation territories; species diversity.


Taxonomic spectra, i.e. relations between supraspecific taxa by the number of included species, remain poorly understood in aspect of the mathematical properties. We studied taxonomic spectra of plants (Magnoliophyta, Bryophyta), animals (Coleoptera, Aves), fungi (Agaricomycetes) and terrestrial protists (Myxomycetes), found in the Homilsha Forests National Nature Park (North-East of Ukraine), and concluded that they correspond to the hollow-curve distribution at the level of genera, families and orders. The spectra of most taxa, as shown by the Akaike information criterion, are closely approximated by the log-series distribution model at all taxonomic levels. This type of distribution is typical for the species abundance curves, based on collections made from small areas. At the same time, in the genera–families–orders row the similarity to the lognormal distribution increases. The central values and variability vary considerably between different taxonomic groups and ranks, however, without affecting the type of distribution. The number of orders in all taxa except Bryophyta has reached the saturation and coincides with the curve of the estimated number of orders according to the Chao1 coefficient. For families and especially genera the correspondence with estimated number of species is much lower. Our results do not confirm the assumption that hollow-curve distributions of taxonomic spectra result from the artificial fragmentation of taxa. These distributions neither depend on the insufficient knowledge about the species composition at the locality, nor reflect the size of the studied area. The presence of such distributions in both local and global biota of different groups may be explained by the common features of their evolution, especially by the existence of relict orphan groups. The fact that in Homilsha Forests the kurtosis and skewness of distributions decreases in the genera–families–orders row can therefore be explained by the relatively low percentage of the high-rank orphan taxa in the local biota. This may be a common feature of communities studied at small geographical scale, since orphan taxa often demonstrate a high level of endemism. Comparative studies of local communities from different climate zones may help to understand how universal are the patterns, described herein.


Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F., Cárdenas, P., Čepička, I., Chistyakova, L., Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A. A., Hoppenrath, M., James, T. Y., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D. J. G., Lara, E., Le Gall, L., Lynn, D. H., Mann, D. G., Massana i Molera, R., Mitchell, E. A. D., Morrow, C., Park, J. S., Pawlowski, J. W., Powell, M. J., Richter, D. J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F. W., Torruella i Cortes, G., Youssef, N., Zlatogursky, V., & Zhang, Q. (2019). Revisions to the classification, nomenclature, and diversity of Eukaryotes. Journal of Eukaryotic Microbiology, 66(1), 4–119.

Bacaro, G., Ricotta, C., & Mazzoleni, S. (2007). Measuring beta-diversity from taxonomic similarity. Journal of Vegetation Science, 18, 793–798.

Barfknecht, D. F., & Gibson, D. J. (2021). Taxonomic and phylogenetic composition show biotic resistance to exotic invasion in acid seep springs. Ecological Processes, 10, 4.

Barsukov, О. О. (2008). Do vyvchennia brioflory natsionalnoho pryrodnoho parku “Homilshanski lisy” [The study of the bryoflora in the Homilsha Forests, National Nature Park]. In: Hnatush, S., Prokopiv, A., & Tselevych, M. (Eds.). Youth and Progress of Biology. LNU, Lviv. P. 84 (in Ukrainian).

Bertrand, Y., Pleijel, F., & Rouse, G. W. (2006). Taxonomic surrogacy in biodiversity assessments, and the meaning of Linnaean ranks. Systematics and Biodiversity, 4, 149–159.

Borg Dahl, M., Brejnrod, A. D., Russel, J., Sørensen, S. J., & Schnittler, M. (2019). Different degrees of niche differentiation for bacteria, fungi, and myxomycetes within an elevational transect in the German Alps. Microbial Ecology, 78(3), 764–780.

Brown, M. W., Heiss, A. A., Kamikawa, R., Inagaki, Y., Yabuki, A., Tice, A. K., Shiratori, T., Ishida, K.-I., Hashimoto, T., Simpson, A., & Roger, A. (2018). Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biology and Evolution, 10(2), 427–433.

Brygadyrenko, V. V. (2015). Evaluation of the ecological niche of some abundant species of the subfamily Platyninae (Coleoptera, Carabidae) against the background of eight ecological factors. Folia Oecologica, 42(2), 75–88.

Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 240–248.

Chapple, D. G., & Ritchie, P. A. (2013). A retrospective approach to testing the DNA barcoding method. PLoS One, 8(11), e77882.

Chen, Y. (2013). An autoregressive model for global vertebrate richness rankings: Long-distance dispersers may have stronger spatial structures. Zoological Studies, 52, 57.

Clayton, W. D. (1972). Some aspects of the genus concept. Kew Bulletin, 27, 281–287.

del Hoyo, J., & Collar, N. J. (2018). Handbook of the birds of the world and BirdLife International digital checklist of the birds of the world. Version 3. Lynx Edicions & Bird Life International, Barcelona, Cambridge.

Desnoues, E., Ferreira de Carvalho, J., & Zohner, C. M. et al. (2017). The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species. Forest Ecosystems, 4, 26. оформите по правилам или удалите

Dial, K. P., & Marzluff, J. M. (1989). Nonrandom diversification within taxonomic assemblages. Systematic Zoology, 38, 26–37.

Emerson, B. C., & Hewitt, G. M. (2005). Phylogeography. Current Biology, 15(10), 367–371.

Holt, B. G., & Jønsson, K. A. (2014). Reconciling hierarchical taxonomy with molecular phylogenies. Systematic Biology, 63, 1010–1017.

Jadoon, W. A., Nakai, R., & Naganuma, T. (2013). Biogeographical note on Antarctic microflorae: Endemism and cosmopolitanism. Geoscience Frontiers, 4(6), 633–646.

Lax, G., Eglit, Y., Eme, L., Bertrand, E. M., Roger, A. J., & Simpson, A. G. B. (2018). Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature, 564(7736), 410–414.

Leontyev, D. V. (2007). Florystychnyi analiz u mikolohii [Biodiversity analysis in mycology]. Osnova, Kharkiv (in Ukrainian).

Leontyev, D. V., & Fefelov, K. A. (2012). Nomenclatural status and morphological notes on Tubifera applanata sp. nov. Mycotaxon, 120(2), 247–251.

Leontyev, D. V., & Schnittler, M. (2017). Phylogeny of myxomycetes. In: Rojas Alvarado, C., & Stephenson, S. L. (Ed.). Myxomycetes. Biology, Systematics, Biogeography and Ecology. Elsevier, New York, Amsterdam. Pp. 83–106.

Leontyev, D. V., Dudka, I. O., Kochergina, A. V., & Kryvomaz, T. I. (2012). New and rare myxomycetes of Ukraine 3. Forest and forest-steppe zone. Nova Hedwigia, 94, 335–354.

Leontyev, D. V., Schnittler, M., & Stephenson, S. L. (2014). Pseudocapillitium or true capillitium? A study of capillitial structures in Alwisia bombarda (Myxomycetes). Nova Hegwigia, 99, 441–451.

Leontyev, D. V., Schnittler, M., Stephenson, S., Novozhilov, Y. K., & Shchepin, O. V. (2019). Towards a phylogenetic classification of myxomycetes. Phytotaxa, 399(3), 209–238.

Lloyd, S. J., Leontyev, D. V., & Dagamac, N. H. (2019). Three new species of Tubifera from Tasmania and New South Wales. Phytotaxa, 414(5), 240–252.

Löbl, I., & Smetana, A. (Eds.). (2003). Catalogue of Palaearctic Coleoptera. Vol. 1. Archostemata-Myxophaga-Adephaga. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2004). Catalogue of Palaearctic Coleoptera. Vol. 2. Hydrophiloidea-Histeroidea-Staphylinoidea. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2006). Catalogue of Palaearctic Coleoptera. Vol. 3. Scarabaeoidea-Scirtoidea-Dascilloidea-Buprestoidea-Byrrhoidea. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2007). Catalogue of Palaearctic Coleoptera. Vol. 4. Elateroidea-Derodontoidea-Bostrichoidea. Lymexyloidea-Cleroidea-Cucujoidea. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2008). Catalogue of Palaearctic Coleoptera. Vol. 5. Tenebrionoidea. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2010). Catalogue of Palaearctic Coleoptera. Vol. 6. Chrysomeloidea. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2011). Catalogue of Palaearctic Coleoptera. Vol. 7. Curculionoidea I. Apollo Books, Stenstrup.

Löbl, I., & Smetana, A. (Eds.). (2013). Catalogue of Palaearctic Coleoptera. Vol. 8. Curculionoidea II. Brill, Leiden, Boston.

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing, New York.

Matthews, T. J., & Whittaker, R. J. (2014). Fitting and comparing competing models of the species abundance distribution: Assessment and prospect. Frontiers in Biogeography, 6, 67–82.

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biology, 9(8), e1001127.

Padial, J. M., Miralles, A., de la Riva, I., & Vances, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7(16), 1–14.

Prylutskyi, O. V., Akulov, O. Y., Leontyev, D. V., Ordynets, O. V., Yatsiuk, I. I., Usichenko, A. S., & Savchenko, A. O. (2017). Fungi and fungus-like organisms of Homilsha Forests National Park, Ukraine. Mycotaxon, 132(3), 1–56.

Putchkov, A. V. (2018). Zhuki-zhuzhelitsyi (Coleoptera, Carabidae) transformirovannyih tsenozov Ukrainyi [Ground-beetles (Сoleoptera, Carabidae) of transformed cenoses of Ukraine]. DonNU, Kyiv (in Russian).

Putchkov, A. V., Brygadyrenko, V. V., & Markina, T. Y. (2019). Ground beetles of the tribe Carabini (Coleoptra, Carabidae) in the main megapolises of Ukraine. Vestnik Zoologii, 53(1), 3–12.

Putchkov, A. V., Brygadyrenko, V. V., & Nikolenko, N. Y. (2020). Ecological-faunistic analysis of ground beetles and tiger beetles (Coleoptera: Carabidae, Cicindelidae) of metropolises of Ukraine. Biosystems Diversity, 28(2), 163–174.

Putchkov, A. V., Markina, T. Y., & Tolkach, I. A. (2010). Preliminary review of ground beetles (Coleoptera: Carabidae) of Nation Natural Park Gomolshanskie Lesa. The Kharkov Entomological Society Gazette, 18(2), 5–9.

Rojas, C., & Stephenson, S. L. (Eds.). (2017). Myxomycetes. Biology, systematics, biogeography and ecology. Elsevier, New York, Amsterdam.

Scheiner, S. M. (Ed.). (2013). Encyclopedia of Biodiversity. Elsevier, New York, Amsterdam.

Shchepin, O. N., Novozhilov, Y. K., & Schnittler, M. (2016). Disentangling the taxonomic structure of the Lepidoderma chailletii-carestianum species complex (Myxogastria, Amoebozoa): Genetic and morphological aspects. Protistology, 10(4), 117–129.

Shchepin, O. N., Schnittler, M., Dagamac, N. H. A., Leontyev, D. V., & Novozhilov, Y. N. (2019). Unexplored diversity of microscopic myxomycetes: Evidence from environmental DNA. Plant Ecology and Evolution, 152(3), 499–506.

Skrylnik, Y. Y., & Bieliavtsev, M. P. (2020). Beetles (Coleoptera) of National Nature Park “Gomilshansky Lisy” according to catches by window traps. Ukrainian Entomological Journal, 18, 20–29.

The Angiosperm Phylogeny Group (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20.

Vlashchenko, S. V., Saidakhmedova, N. B., Honcharov, H. L., Yatsiuk, Y. O., Prylutskyi, O. V., Viter, S. V., Vlashchenko, A. S., & Akulov, O. Y. (2010). Litopys pryrody Natsionalnoho pryrodnoho parku Homilshanski lisy [Chronicle of nature of the Homilsha Forests National Nature Park]. Vol. 6. V. N. Karasin Kharkiv National University, Kharkiv (in Ukrainian).

Wijayawardene, N. N., Hyde, K. D., Dai, D. Q., Tang, L. Z., Aptroot, A., Castañeda-Ruiz, R. F., Dru-zhinina, I. S., Cai, F., Ekanayaka, A. H., Erdoğdu, M., Fiuza, P., Gentekaki, E., Goto, B., Haelewa-Ters, D., Hongsanan, S., Jeewon, R., Kirk, P., Jayalal, U., Karunarathna, S. C., Lumbsch, T., Madrid, H., Maharachchikumbura, S. S. N., Monteiro, J. S., Shivaprakash, N., Pfliegler, W. P., Phillips, A. J. L., Saxena, R. K., Stadler, M., Tian, Q., Tokarev, Y. S., Tsurykau, A., Ertz, D., Lee, H. B., Etayo, J., Vizzini, A., Jones, E. G. B., Lin, C. G., Li, W., Dai, Y. C., Fan, X. L., McKenzie, E. H. C., Shivas, R. G., Hustad, V., Leontyev, D. V. de Hoog, G. S., Niskanen, T., Boekhout, T., Gaya, E., & Thines, M. (2020). A dynamic portal for a community-driven, continuously updated classification of Fungi and fungus-like organisms. Mycosphere, 11(1), 1514–1526.

Yatsiuk, I. I., Leontyev, D. V., & Shlakhter, M. (2018). Myxomycetes of National Nature Park Slobozhanskiy (Ukraine): Biodiversity and noteworthy species. Nordic Journal of Botany, 1, e01605.