Variability of the structure of winter microbial communities in Chelyabinsk lakes

  • S. V. Andreeva Chelyabinsk State University
  • Y. Y. Filippova Chelyabinsk State University
  • E. V. Devyatova Chelyabinsk State University
  • D. Y. Nokhrin Chelyabinsk State University
Keywords: water of surface water bodies; microbial communities of water bodies; anthropogenic load; canonical correspondence analysis; industrial megalopolis lakes


Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.


Abou-Shanab, R. A., Angle, J. S., & van Berkum, P. (2007). Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.). Interna-tional Journal of Phytoremediation, 9(2), 91–105.

Aguilar, P., Dorador, C., Vila, I., & Sommaruga, R. (2018). Bacterioplankton com-position in tropical high-elevation lakes of the Andean plateau. FEMS Microbi-ology Ecology, 94(3), fiy004.

Aguilera-Arreola, M. G., Ostria-Hernández, M. L., Albarrán-Fernández, E., Juárez-Enriquez, S. R., Majalca-Martínez, C., Rico-Verdín, B., Ruiz, E. A., Ruiz-Palma, M. D. S., Morales-Garcia, M. R., & Contreras-Rodríguez, A. (2018). Correct identification of Ochrobactrum anthropi from blood culture using 16rRNA Sequencing: A first case report in an immunocompromised patient in Mexico. Frontiers in Medicine, 5, 205.

Alamri, S. (2012). Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake. Saudi Journal of Biological Sciences, 19(4), 435–440.

Alon, D., Karniel, E., Zohar, I., & Stein, G. (2018). Chryseobacterium indologenes bacteremia: Clinical and microbiological characteristics of an emerging infec-tion. International Journal of Clinical Medicine, 9, 520–527.

Azakami, H., Nakashima, H., Akimichi, H., Noiri, Y., Ebisu, S., & Kato, A. (2006). Involvement of N-acetyl-D-galactosamine-specific lectin in biofilm formation by the periodontopathogenic bacterium, Eikenella corrodens. Bioscience, Bio-technology, and Biochemistry, 70(2), 441–446.

Babic, I., Fischer-Le Saux, M., Giraud, E., & Boemare, N. (2000). Occurrence of natural dixenic associations between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Hete-rorhabditis spp. (Nematoda, Rhabditida). Microbiology, 146(3), 709–718.

Beattie, R., Skwor, T., & Hristova, K. (2020). Survivor microbial populations in post-chlorinated wastewater are strongly associated with untreated hospital sewage and include ceftazidime and meropenem resistant populations. Science of the Total Environment, 740, 140186.

Butler, T. M., Wilhelm, A. C., Dwyer, A. C., Webb, P. N., Baldwin, A. L., & Tech-tmann, S. M. (2019). Microbial community dynamics during lake ice freezing. Scientific Reports, 9(1), 6231.

Cao, X., Wang, Y., Xu, Y., Duan, G., Huang, M., & Peng, J. (2020). Adaptive variations of sediment microbial communities and indication of fecal-associated bacteria to nutrients in a regulated urban river. Water, 12(5), 1344.

Cavaco, M. A., St Louis, V. L., Engel, K., St Pierre, K. A., Schiff, S. L., Stibal, M., & Neufeld, J. D. (2019). Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiology Ecology, 95(11), iz161.

Chang, B. V., Chiang, B. W., & Yuan, S. Y. (2007). Biodegradation of nonylphenol in soil. Chemosphere, 66(10), 1857–1862.

Chapagain, P., Arivett, B., Cleveland, B. M., Walker, D. M., & Salem, M. (2019). Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (On-corhynchus mykiss). BMC Genomics, 20(1), 788.

Chernyaeva, L. E., Chernyaev, A. M., & Eremeeva, T. N. (1977). Gidrokhimiya ozer: Ural i Priural’ye [Hydrochemistry of lakes: Ural and Transurals region]. Hydrometeoisdat, Leningrad (in Russian).

Cyprowski, M., Stobnicka-Kupiec, A., Ławniczek-Wałczyk, A., Bakal-Kijek, A., Gołofit-Szymczak, M., & Górny, R. L. (2018). Anaerobic bacteria in wastewa-ter treatment plant. International Archives of Occupational and Environmental health, 91(5), 571–579.

David, G. M., López García, P., Moreira, D., Alric, B., Deschamps, P., Bertolino, P., Restoux, G., Rochelle-Newall, E., Thébault, E., Simon, M., & Jardillier, L. (2021). Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Molecular Ecology, 30(9), 2162–2177.

Deryabina, L. V., Safonova, E. V., Bogdanov, G. O., Andreev, S. S., Yachmenev, V. A., & Pryakhin, E. A. (2008). Biologicheskaya otsenka sostoyaniya Shershnovskogo vodokhranilishcha v 2007 godu [Biological assessment of the state of the Shershnevsky Reservoir in 2007]. Bulletin of the Chelyabinsk State University, Series Biology, 1(4), 128–130 (in Russian).

Fàbrega, A., & Vila, J. (2012). Yersinia enterocolitica: Pathogenesis, virulence, and antimicrobial resistance. Enfermedades Infecciosas y Microbiologia Clinica, 30(1), 24–32.

Falk, N., Reid, T., Skoyles, A., Grgicak-Mannion, A., Drouillard, K., & Weisener, C. G. (2019). Microbial metatranscriptomic investigations across contaminant gradients of the Detroit River. Science of the Total Environment, 690, 121–131.

Gomes, N. C., Kosheleva, I. A., Abraham, W. R., & Smalla, K. (2005). Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiology Ecology, 54(1), 21–33.

Guillier, L., Fravalo, P., Leclercq, A., Thébault, A., Kooh, P., Cadavez, V., & Gon-zales-Barron, U. (2021). Risk factors for sporadic Yersinia enterocolitica infec-tions: A systematic review and meta-analysis. Microbial Risk Analysis, 17, 100141.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statis-tics software package for education and data analysis. Palaeontologia Electroni-ca, 1, 1–9.

Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503.

Huang, F., Wang, Z. H., Cai, Y. X., Chen, S. H., Tian, J. H., & Cai, K. Z. (2018). Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicology and Environmental Safety, 157, 216–226.

Huang, L., Zhao, T., He, Y., Liu, Y., Liu, C., Jin, D., & Jia, X. (2017). 两株绿脓杆菌对石油污染土壤的修复作用 [Bioremediation of oil-contaminated field by two Pseudomonas aeruginosa strains]. Chinese Journal of Biotechnology, 33(6), 957–967 (in Chinese).

Hubert, F., Rodier, M. H., Minoza, A., Portet-Sulla, V., Cateau, E., & Brunet, K. (2021). Free-living amoebae promote Candida auris survival and proliferation in water. Letters in Applied Microbiology, 72(1), 82–89.

Iliev, I., Yahubyan, G., Marhova, M., Apostolova, E., Gozmanova, M., Gecheva, G., Kostadinova, S., Ivanova, A., & Baev, V. (2017). Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. Journal of Basic Microbiology, 57(8), 669–679.

Izrael-Živković, L., Beškoski, V., Rikalović, M., Kazazić, S., Shapiro, N., Woyke, T., Gojgić-Cvijović, G., Vrvić, M. M., Maksimović, N., & Karadžić, I. (2019). High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals. Extremophiles: Life Under Ex-treme Conditions, 23(4), 399–405.

Janda, J., Abbott, S., & McIver, C. (2016). Plesiomonas shigelloides revisited. Clini-cal Microbiology Reviews, 29(2), 349–374.

Ji, B., Liang, J., Ma, Y., Zhu, L., & Liu, Y. (2019). Bacterial community and eutrophic index analysis of the East Lake. Environmental Pollution, 252, 682–688.

Kang, D., & Kirienko, N. V. (2018). Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. Journal of Microbiology, 56(7), 449–457.

Kiama, C., Njire, M., Kambura, A., Mugweru, J., Matiru, V., Wafula, E., Kagali, R. N., & Kuja, J. O. (2021). Prokaryotic diversity and composition within equatorial lakes Olbolosat and Oloiden in Kenya (Africa). Current Research in Microbial Sciences, 2, 100066.

Kiersztyn, B., Chróst, R., Kaliński, T., Siuda, W., Bukowska, A., Kowalczyk, G., & Grabowska, K. (2019). Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Scientific Reports, 9(1), 11144.

Kim, S., Jeon, H., Han, H., & Hur, J. (2021). Evaluation of Bacillus albus SMG-1 and B. safensis SMG-2 isolated from Saemangeum Lake as probiotics for aq-uaculture of white shrimp (Litopenaeus vannamei). Aquaculture Reports, 20, 100743.

Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research, 120, 1–8.

Kuebutornye, F., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish and Shellfish Immunology, 87, 820–828.

Kumari, S., & Das, S. (2019). Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation. Environmental Science and Pollution Research International, 26(28), 28763–28774.

Li, J., Ouyang, X., & Zhu, X. (2021). Land space simulation of urban agglomerations from the perspective of the symbiosis of urban development and ecological protection: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Ecological Indicators, 126, 107669.

Lim, W. G., Tong, T., & Chew, J. (2020). Chryseobacterium indologenes and Chryseobacterium gleum interact and multiply intracellularly in Acanthamoeba castellanii. Experimental Parasitology, 211, 107862.

Liu, C., Minor, E., Garfinkel, M., Mu, B., & Tian, G. (2021). Anthropogenic and climatic factors differentially affect waterbody area and connectivity in an urba-nizing landscape: A case study in Zhengzhou, China. Land, 10(10), 1070.

Liu, K., Hou, J., Liu, Y., Hu, A., Wang, M., Wang, F., Chen, Y., & Gu, Z. (2019). Biogeography of the free-living and particle-attached bacteria in Tibetan lakes. FEMS Microbiology Ecology, 95(7), fiz088.

Lucero-Estrada, C., Favier, G., & Escudero, M. (2020). An overview of Yersinia enterocolitica and related species in samples of different origin from San Luis, Argentina. Food Microbiology, 86, 103345.

Manikkam, R., Imchen, M., Kaari, M., Angamuthu, V., Venugopal, G., & Thanga-vel, S., Joseph, J., Ramasamy, B., & Kumavath, R. (2020). Metagenomic in-sights unveil the dominance of undescribed Actinobacteria in pond ecosystem of an Indian shrine. Meta Gene, 23, 100639.

Mathai, P., Dunn, H., Magnone, P., Zhang, Q., Ishii, S., Chun, C., & Sadowsky, M. (2019). Association between submerged aquatic vegetation and elevated levels of Escherichia coli and potential bacterial pathogens in freshwater lakes. Science of the Total Environment, 657, 319–324.

Matsuda, S., Hiyoshi, H., Tandhavanant, S., & Kodama, T. (2020). Advances on Vibrio parahaemolyticus research in the postgenomic era. Microbiology and Immunology, 64(3), 167–181.

McLoughlin, S., Spillane, C., Claffey, N., Smith, P. E., O’Rourke, T., Diskin, M. G., & Waters, S. M. (2020). Rumen microbiome composition is altered in sheep divergent in feed efficiency. Frontiers in Microbiology, 11, 1981.

Mueller-Spitz, S. R., Stewart, L. B., Klump, J. V., & McLellan, S. L. (2010). Fresh-water suspended sediments and sewage are reservoirs for enterotoxin-positive Clostridium perfringens. Applied and Environmental Microbiology, 76(16), 5556–5562.

Müller, N., Scherag, F., Pester, M., & Schink, B. (2015). Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwa-ter lake sediment. Systematic and Applied Microbiology, 38(6), 379–389.

Nevers, M., Byappanahalli, M., Nakatsu, C., Kinzelman, J., Phanikumar, M., Shive-ly, D., & Spoljaric, A. (2020). Interaction of bacterial communities and indica-tors of water quality in shoreline sand, sediment, and water of Lake Michigan. Water Research, 178, 115671.

Nnadozie, C. F., & Odume, O. N. (2019). Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resis-tance genes. Environmental Pollution, 254(B), 113067.

Nokhrin, D. Y., Gribovsky, Y. G., & Davydova, N. A. (2018). Correlation adapto-metry of microelement composition of tissues as a method of estimation of the environmental stress (on the example of populations of commercial fishes from mineralized water). Questions of Legal Regulation in Veterinary Medicine, 4, 225–230.

Nokhrin, D. Y., Gribovsky, Y. G., Davydova, N. A., & Korlyakov, K. A. (2020). Shershnevskoye vodokhranilische [Shershnevskoe reservoir]. In: Nokhrin, D. Y. (Ed.). Ekologicheskoye i veterinarno-sanitarnoye sostoyaniye vodoye-mov Chelyabinskoy oblasti [Ecological and veterinary-sanitary state of water reservoirs in the Chelyabinsk Region]. New Format, Ekaterinburg, Barnaul. Pp. 68–93 (in Russian).

Numberger, D., Ganzert, L., Zoccarato, L., Mühldorfer, K., Sauer, S., Grossart, H. P., & Greenwood, A. D. (2019). Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA se-quencing. Scientific Reports, 9(1), 9673.

Okabe, S., Okayama, N., Savichtcheva, O., & Ito, T. (2007). Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Applied Microbiology and Biotechnology, 74(4), 890–901.

Osipov, G. A., Boiko, N. B., Fedosova, N. F., Kasikhina, S. A., & Lyadov, K. V. (2009). Comparative gas chromatography-mass spectrometry study of the composition of microbial chemical markers in feces. Microbial Ecology in Health and Disease, 21, 159–171.

Pennycook, K., Pennycook, K., McCready, T., & Kazanowski, D. (2020). Severe cellulitis and bacteremia caused by Plesiomonas shigelloides following a trau-matic freshwater injury. Idcases, 19, e00637.

Penton, M., 3rd, Oraa, S. S., Abdelhemid, A., Otto, C., & Hammerschlag, M. R. (2020). Head and neck infections in children due to Eikenella corrodens: Report of three cases and review of literature. International Journal of Pediatric Otorhinolaryngology, 138, 110287.

Phulpoto, I., Hu, B., Wang, Y., Ndayisenga, F., Li, J., & Yu, Z. (2021). Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation. Science of the Total Environment, 751, 141720.

Qu, J., Jia, C., Liu, Q., Li, Z., Liu, P., Yang, M., Zhao, M., Li, W., Zhu, H., & Zhang, Q. (2018). Dynamics of bacterial community diversity and structure in the ter-minal reservoir of the South-To-North Water Diversion Project in China. Wa-ter, 10(6), 709.

Rajakumar, S., Ayyasamy, P. M., Shanthi, K., Thavamani, P., Velmurugan, P., Song, Y. C., & Lakshmanaperumalsamy, P. (2008). Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water. Journal of Hazardous Materials, 157, 553–563.

Ramírez, V., Baez, A., López, P., Bustillos, R., Villalobos, M. Á., Carreño, R., & Munive, J. A. (2019). Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Frontiers in Microbiology, 10, 1833.

Ramos, M. S., Furlan, J., Gallo, I., Dos Santos, L., de Campos, T. A., Savazzi, E. A., & Stehling, E. G. (2020). High level of resistance to antimicrobials and heavy metals in multidrug-resistant Pseudomonas sp. isolated from water sources. Current Microbiology, 77(10), 2694–2701.

Reid, T., Droppo, I. G., & Weisener, C. G. (2020). Tracking functional bacterial biomarkers in response to a gradient of contaminant exposure within a river continuum. Water Research, 168, 115167.

Ren, Z., Wang, F., Qu, X., Elser, J. J., Liu, Y., & Chu, L. (2017). Taxonomic and functional differences between microbial communities in Qinghai Lake and its input streams. Frontiers in Microbiology, 8, 2319.

Rodríguez-Rojas, L., Suarez-López, A., Cantón, R., & Ruiz-Garbajosa, P. (2020). Eikenella corrodens causing deep-seated infections. Six-year experience in a University Hospital in Madrid. Enfermedades Infecciosas y Microbiologia Cli-nica, 38(2), 76–78.

Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A. M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep, K., Pawlowski, J., Petrusek, A., Piggott, J. J., Rusch, J. C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D. A., Vasquez, M. I., Vralstad, T., Zlatkovic, S., Zupancic, M., & Stoeck, T. (2021). Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research, 191, 116767.

Serebrennikova, Y. A. (2010). Kriticheskiye osobennosti indikatora nekotorykh vodoyemov goroda Chelyabinska [Critical indicator features of some reservoirs of the city of Chelyabinsk]. Siberian Journal of Life Sciences and Agriculture, 6(1), 293–296 (in Russian).

Sharma, B., & Shukla, P. (2021). Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. Journal of Hazardous Materials, 401, 123285.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. Freeman & Co., New York.

Tadese, D., Sun, C., Liu, B., Muritu, R., Kevin, N., & Zhou, Q., Zhu, L., Zhang, H., Bo, L., Liu, M., Xu, H. (2020). Combined effects of emodin and Clostridium butyricum on growth and non-specific immunity of giant freshwater prawns, Macrobrachium rosenbergii. Aquaculture, 525, 735281.

Tanaka, M., Araki, K., Higuchi, H., Fukuoka-Araki, K., Horikoshi, Y., & Hataya, H. (2020). Pediatric acute dacryocystitis due to Eikenella corrodens: A case report. Journal of Infection and Chemotherapy, 26(5), 510–512.

Tanzadeh, J., Ghasemi, M. F., Anvari, M., & Issazadeh, K. (2020). Biological removal of crude oil with the use of native bacterial consortia isolated from the shorelines of the Caspian Sea. Biotechnology and Biotechnological Equipment, 34(1), 361–374.

Tian, L., Yan, Z., Wang, C., Xu, S., & Jiang, H. (2021). Habitat heterogeneity induc-es regional differences in sediment nitrogen fixation in eutrophic freshwater lake. Science of the Total Environment, 772, 145594.

Vadde, K., Feng, Q., Wang, J., McCarthy, A., & Sekar, R. (2019). Next-generation sequencing reveals fecal contamination and potentially pathogenic bacteria in a major inflow river of Taihu Lake. Environmental Pollution, 254, 113108.

Varjani, S., Upasani, V. N., & Pandey, A. (2020). Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phyto-toxicity of petroleum hydrocarbons for seed germination. Science of the Total Environment, 737, 139766.

Vierheilig, J., Frick, C., Mayer, R. E., Kirschner, A. K., Reischer, G. H., Derx, J., Mach, R. L., Sommer, R., & Farnleitner, A. H. (2013). Clostridium perfringens is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Applied and Environmental Microbiology, 79(16), 5089–5092.

Vila, A., Pagella, H., Vera Bello, G., & Vicente, A. (2016). Brucella suis bacteremia misidentified as Ochrobactrum anthropi by the VITEK 2 system. Journal of Infection in Developing Countries, 10(4), 432–436.

Wahl, H., Raudabaugh, D., Bach, E., Bone, T., Luttenton, M., Cichewicz, R., & Miller, A. (2018). What lies beneath? Fungal diversity at the bottom of Lake Michigan and Lake Superior. Journal of Great Lakes Research, 44(2), 263–270.

Wang, N., Jiang, M., Zhang, P., Shu, H., Li, Y., Guo, Z., & Li, Y. (2020). Ameliora-tion of Cd-induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio. Chemosphere, 245, 125613.

Ward, P. G., Goff, M., Donner, M., Kaminsky, W., & O’Connor, K. E. (2006). A two-step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environmental Science and Technology, 40(7), 2433–2437.

Wu, M., Liang, J., Tang, J., Li, G., Shan, S., Guo, Z., & Deng, L. (2017). Decontami-nation of multiple heavy metals-containing effluents through microbial biotech-nology. Journal of Hazardous Materials, 337, 189–197.

Xie, E., Zhao, X., Li, K., Zhang, P., Zhou, X., & Zhao, X. (2021). Microbial com-munity structure in the river sediments from upstream of Guanting Reservoir: Potential impacts of reclaimed water recharge. Science of the Total Environ-ment, 766, 142609.

Yadav, N., Kour, D., & Yadav, A. N. (2018). Microbiomes of freshwater lake ecosystems. Journal of Microbiology and Experimentation, 6(6), 245–248.

Yang, Y., Chen, J., Tong, T., Xie, S., & Liu, Y. (2020). Influences of eutrophication on methanogenesis pathways and methanogenic microbial community struc-tures in freshwater lakes. Environmental Pollution, 260, 114106.

Yin, Y., Zhang, P., Yue, X., Du, X., Li, W., Yin, Y., Yi, C., & Li, Y. (2018). Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gi-belio: Bioaccumulation, antioxidant responses and immune responses. Ecotoxicology and Environmental Safety, 161, 755–762.

Yue, Y., Wang, F., Fu, Z., Tang, Y., Ma, J., Qin, Y., Yang, M., & Chen, X.-P. (2020). Differential response of microbial diversity and abundance to hydrological residual time and age in cascade reservoirs. Journal of Soils and Sediments, 21(2), 1290–1301.

Zakharov, S. G. (2014). Ekosistema ozera Chebarkul do i posle padeniya meteorita [Ecosystem of Lake Chebarkul before and after the fall of the meteorite]. Edge Ra, Chelyabinsk (in Russian).

Zakharov, S. G., & Likhachev, S. F. (2008). Dinamika i sovremennoye sostoyaniye osnovnykh geoekologicheskikh parametrov ozera Smolino [Dynamics and the current state of the main geoecological parameters of Lake Smolino]. Bulletin of the Chelyabinsk State University, Ecology, Environmental Management, 17, 62–68 (in Russian).

Zakharov, S. G. (2010). Ozera Chelyabinskoy oblasti [Lakes of the Chelyabinsk region]. Abris, Chelyabinsk (in Russian).

Zhang, L., Zhao, T., Wang, Q., Li, L., Shen, T., & Gao, G. (2019). Bacterial community composition in aquatic and sediment samples with spatiotemporal dynamics in large, shallow, eutrophic Lake Chaohu, China. Journal of Freshwater Ecology, 34(1), 575–589.

Zurek, L., Schal, C., & Watson, D. W. (2000). Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Dipte-ra: Muscidae) larvae. Journal of Medical Entomology, 37(6), 924–928.