Fouling communities of microscopic fungi on various substrates of the Black Sea

  • N. I. Kopytina A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
  • E. A. Bocharova A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Keywords: marine fungi; concrete; mollusks; stones; wood; the Black Sea.

Abstract

Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.

References

Abdel-Wahab, M., Jones, E. B. G., Bahkali, A. H. A., & El-Gorban, A. M. (2019). Marine fungi from Red Sea mangroves in Saudi Arabia with Fulvocentrum ru-brum sp. nov. (Torpedosporales, Ascomycota). Nova Hedwigia, 108(3), 1–13.

Afiyatullov, S. S., & Zhuravleva, O. I. (2019). Sovmestnoe kul’tivirovanie morskih gribov-mikromicetov – perspektivnyj sposob polucheniya novyh bioaktivnyh vtorichnyh metabolitov [Co-cultivation of marine micromycetes fungi is a promising way of obtaining new bioactive secondary metabolites]. Vestnik DVO RAN, 5, 57–65 (in Russian).

Alker, A. P., Smith, G. W., & Kim, K. (2001). Characterization of Aspergillus sydo-wii (Thom et Church), a fungal pathogen of Caribbean Sea fan corals. Hydrobi-ologia, 460, 105–111.

Amend, A., Burgaud, G., Cunliffe, M., Edgcomb, V. P., Ettinger, C. L., Gutiérrez, M. H., Heitman, J., Hom, E. F. Y., Ianiri, G., Jones, A. C., Kagami, M., Picard, K. T., Quandt, C. A., Raghukumar, S., Riquelme, M., Stajich, J., Vargas-Muñiz, J., Walker, A. K., Yarden, O., & Gladfelter, A. S. (2019). Fungi in the marine environment: Open questions and unsolved problems. mBio, 10(2), e01189-18.

Ananda, K., Prasannarai, K., & Sridhar, K. R. (1998). Occurrence of higher marine fungi on marine animal substrates of some beaches along the west coast of In-dia. Indian Journal of Geo-Marine Sciences, 27(2), 233–236.

Awaluddin, H. H., Nor, N. A. M., Nor, H. M., Sharuddin, S. S., Pang, K.-L., Moha-mad-Fauzi, N., Rizman-Idid, M., & Alias, S. A. (2015). Biodiversity of marine lignicolous fungi from mangroves of Sulu Sea. Malaysian Journal of Science 34(1), 43–57.

Barinova, K. V., Vlasov, D. Y., Shchiparev, S. M., Zelenskaya, M. S., Rusakov, A. V., & Frank-Kameneckaya, O. V. (2010). Organicheskie kisloty mikromicetov, izolirovannyh s kamenistyh substratov [Organic acids of microfungi isolated from the rock substances]. Mikologiya i Fitopatologiya, 44(2), 137–142. (in Russian).

Bilaj, V. I., & Koval’, E. Z. (1988). Aspergilly [Aspergillus]. Naukova Dumka, Kiev. (in Russian).

Bindschedler, S., Cailleau, G., & Verrecchia, E. (2016). Role of fungi in the biomine-ralization of calcite. Minerals, 6, 41.

Bocharova, E. A., Kopytina, N. I., & Slynko, Е. Е. (2021). Anti-tumour drugs of marine origin currently at various stages of clinical trials (Review). Regulatory Mechanisms in Biosystems, 12(2), 265–280.

Borzyh, O. G., & Zvereva, L. V. (2012). Micelial’nye griby v epibioze primorskogo grebeshka Mizuhopecten yessoensis (Bivalvia) v zalive Petra Velikogo Ya-ponskogo morya [Mycelial fungi in the epibiosis of the seaside scallop Mizuhopecten yessoensis (Bivalvia) in the Peter the Great Bay of the Sea of Japan]. Biologiya Morya, 38(6), 483–484 (in Russian).

Borzyh, O. G., & Zvereva, L. V. (2012а). Mikobiota gigantskoj ustricy Crassostrea gigas (Thunberg, 1787) (Bivalvia) iz zaliva Petra Velikogo Yaponskogo moray [Mycobiota of the giant oyster Crassostrea gigas (Thunberg, 1787) (Bivalvia) from Great Peter Bay of the Sea of Japan]. Mikrobiologiya, 81(1), 117–119 (in Russian).

Borzyh, O. G., & Zvereva, L. V. (2014). Sravnenie gribnyh kompleksov primorskogo grebeshka Mizuhopecten yessoensis (Jay, 1856) iz razlichnyh rajonov zaliva Petra Velikogo Yaponskogo moray [Comparison of mushroom complexes of the seaside scallop Mizuhopecten yessoensis (Jay, 1856) from various areas of Peter the Great Bay of the Sea of Japan]. Mikrobiologiya, 83(5), 599–604 (in Russian).

Borzyh, O. G., & Zvereva, L. V. (2015). Mikobiota dvustvorchatogo mollyuska Anadara broughtoni (Schrenck, 1867) (Bivalvia: Arcideae) iz zaliva Petra Ve-likogo Yaponskogo moray [Mycobiota of the bivalve mollusk Anadara broughtoni (Schrenck, 1867) (Bivalvia: Arcidae) from Great Peter Bay of the Sea of Japan]. Biologiya Morya, 41(4), 290–291 (in Russian).

Bubnova, E. N., Grum-Grzhimailoa, O. A., & Kozlovsky, V. V. (2020). Composition and structure of the community of mycelial fungi in the Bottom Sediments of the White Sea. Moscow University Biological Sciences Bulletin, 75(3), 153–158.

Clarke, K. R., & Warwick, R. M. (1998). A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology, 35, 523–531.

Clarke, K. R., & Warwick, R. M. (2001). A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Marine Ecology Progress Se-ries, 216, 265–278.

Clarke, K. R., Gorley, R. N., Somerfield, P. J., & Warwick, R. M. (2014). Change in marine communities: An approach to statistical analysis and interpretation. 3rd edition. Primer-E, Plymouth.

Cwalina, B. (2008). Biodeterioration of concrete. Architecture Civil Engineering Environment, 1(4), 133–140.

De Hoog, G. S., Guarro, J., Gene, J., & Figueras, M. J. (2000). Atlas of clinical fungi. CBS, Utrecht, Reus.

Doroshenko, Y. V. (2013). Harakteristika rosta massovyh vidov drozhzhej perifitona sistem gidrobiologicheskoj ochistki morskih vod [Characteristics of the growth of mass yeast species of periphyton systems of hydrobiological purification of marine waters]. Byuleten’ DNBS, 109, 13–17 (in Russian).

Elkhateed, W. A., Elnahas, M. O., & Daba, G. M. (2021). Review: Microbial in-duced mineralization of calcium carbonate for self-healing concrete. Asian Journal of Natural Product Biochemistry, 19(1), 1–9.

Gebruk, A. A., Borisova, P. B., Glebova, M. A., Basin, A. B., Simakov, M. I., Shabalin, N. V., & Mokievsky, V. O. (2019). Macrozoobenthos of the shallow waters of Pechora Bay (SE Barents Sea). Nature Conservation Research, 4(4), 1–11.

Gleason, F. H., Gadd, G. M., Pitt, J. I., & Larkum, A. W. D. (2017). The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology, 8(3), 205–215.

Gleason, F. H., Gadd, G. M., Pitt, J. I., & Larkum, A. W. D. (2017). The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology, 8(3), 216–227.

Gnavi, G., Garzoli, L., Poli, A., Prigione, V., Burgaud, G., Giovanna, & Varese, G. C. (2017). The culturable mycobiota of Flabellia petiolata: First survey of marine fungi associated to a Mediterranean green alga. PLoS One, 12(4), e0175941.

Gonçalves, M. F. M., Santos, L., Silva, B. M. V., Abreu, A. C., Vicente, T. F. L., Esteves, A. C., & Alves, A. (2019). Biodiversity of Penicillium species from marine environments in Portugal and description of Penicillium lusitanum sp. nov., a novel species isolated from sea water. International Journal of Systematic and Evolutionary Microbiology, 69, 3014–3021.

Greco, G., Capello, M., Cecchi, G., Cutroneo, L., Di Piazza, S., & Zotti, M. (2017). Another possible risk for the Mediterranean Sea? Aspergillus sydowii discov-ered in the Port of Genoa (Ligurian Sea, Italy). Marine Pollution Bulletin, 122, 470–474.

Grovel, O., Pouchus, Y., & Verbist, J. (2003). Accumulation of gliotoxin, a cytotoxic mycotoxin from Aspergillus fumigatus, in blue mussel (Mytilus edulis). Toxicon, 42(3), 297–300.

Guarro, J., Kantarcioglu, A. S., Horré, R., Rodriguez-Tudela, J. L., Estrella, M. C., Berenguer, J., & De Hoog, G. S. (2006). Scedosporium apiospermum: chang-ing clinical spectrum of a therapy-refractory opportunist. Medical Mycology, 44, 295–327.

Hudyakova, Y. V., Kirichuk, N. N., Pivkin, M. V., & Butorina, T. E. (2017). Griby-associanty primorskogo grebeshka Mizuhopecten yessoensis Jay, 1875 v uslo-viyah marikul’tury (buhta Severnaya, zaliv Slavyanskij, Yaponskoe more) [Associated fungi of the Yesso scallop Mizuhopecten yessoensis Jay, 1875 under mariculture conditions (Severnaya Bay, Slavyansky Bay, Sea of Japan)]. Uspekhi Sovremennoj Nauki, 2(5), 218–222 (in Russian).

Immaculatejeyasanta, K., Madhanraj, P., Patterson, J., & Panneerselvam, A. (2012). Diversity of driftwood associated marine fungi of the Muthupet mangrove of Tamilnadu, India. Elixir Bio Diversity, 42A, 6544–6548.

Ion, R.-M., Grigorescu, R.-M., Iancu, L., Ghioca, P., & Radu, N. (2018). Polymeric micro- and nanosystems for wood artifacts preservation. In: Pagnola, M. R., Vivero, J. U., & Marrugo, A. G. (Eds.). New uses of micro and nanomaterials. IntechOpen, London. Pp. 74–93.

Jin, C., Yu, R., & Shui, Z. (2018). Fungi: A neglected candidate for the application of self-healing concrete. Frontiers in Built Environment, 4, 62.

Jones, E. B. G., Pang, K.-L., Abdel-Wahab, M. A., Scholz, B., Hyde, K. D., Boek-hout, T., Ebe, R., Rateb, M. E., Henderson, L., Sakayaroj, J., Suetrong, S., Dayarathne, M. C., Kumar, V., Raghukumar, S., Sridhar, K. R., Bahkali, A. H. A., Gleason, F. H., & Norphanphoun, C. (2019). An online resource for marine fungi. Fungal Diversity, 96, 347–433.

Jones, E. B. G., Sakayaroj, J., Suetrong, S., Somrithipol, S., & Pang, K. L. (2009). Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity, 35, 1–187.

Jones, E. B. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., & Pang, K.-L. (2015). Classification of marine Ascomycota, Ba-sidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diversity, 73, 1–72.

Karamova, N. S., Nadeeva, G. V., & Bagaeva, T. V. (2014). Metody issledovaniya i ocenki biopovrezhdenij, vyzyvaemyh mikroorganizmami (uchebno-metodicheskoe posobie) [Methods of research and evaluation of biological damage caused by microorganisms (educational and methodological manual)]. Kazanskij Universitet, Kazan’ (in Russian).

Kohlmeyer, J. (1969). The role of marine fungi in the penetration of calcareous substances. American Zoologist, 9, 741–746.

Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology. The higher fungi. Academic Press, New York.

Kopytina, N. I. (2020). Mikobiota pelagiali Odesskogo regiona severo-zapadnoj chasti Chyornogo moria [Microbiota of the pelagial of the Odessa region of the north-western part of the Black Sea]. Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 52, 140–163 (in Russian).

Kopytina, N. I., & Lebedovskaya, M. V. (2014). Mikromicety – epibionty gigantskoj ustricy Crassostrea gigas, kul’tiviruemoj v Chernom more [Micromycetes-epibionts of the Pacific giant oyster Crassostrea gigas, cultivated in the Black Sea]. Morskoj Ekologicheskij Zhurnal, 12(13), 41–44 (in Russian).

Li, Q., Csetenyi, L., & Gadd, G. M. (2014). Biomineralization of metal carbonates by Neurospora crassa. Environmental Science and Technology, 48(24), 14409–14416.

Li, Q., Csetenyi, L., Paton, G. I., & Gadd, G. M. (2015). CaCO3 and SrCO3 biopreci-pitation by fungi isolated from calcareous soil. Environmental Microbiology, 17(8), 3082–3097.

Lian, B., Chen, Y., Zhu, L., & Yang, R. (2008). Effect of microbial weathering on carbonate rocks. Earth Science Frontiers, 15(6), 90–99.

Luo, J., Chen, X., Crump, J., Zhou, H., Davie, D., Zhou, G., & Jin, C. (2018). Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction Building Materials, 164, 275–285.

Magan, N. (2007). Fungi in extreme environment. In: Kubicek, C. P., & Druzhinina, I. S. (Eds.). Environmental and microbial relationships. The mycota IV. Sprin-ger-Verlag, Berlin.

Mantilla, K., Suárez-Barrera, M., Rueda-Forero, N. J., Guarín, O. D., Gómez, F. R., Durán, S. M., & Tiria, L. C. (2019). Characterization of biodeteriorating micro-organisms in buildings in Bucaramanga, Colombia. Journal of Physics: Confe-rence Series, 1386, 012104.

Marfenina, O. E. (2005). Antropogennaya ekologiya pochvennyh gribov [The anthropogenic ecology of soil fungi]. “Meditsina Dlya Vsekh” Natsional’naya Akademiya Mikologii, Moscow (in Russian).

Martuscelli, C., Soares, C., Camões, A., & Lima, N. (2020). Potential of fungi for concrete repair. Procedia Manufacturing, 46, 180–185.

Menon, R. R., Luo, J., Chen, X., Zhou, H., Liu, Z., Zhou, G., Zhang, N., & Jin, C. (2019). Screening of fungi for potential application of self-healing concrete. Scientific Reports, 9, 2075.

Mosyagin, A. V., Knauf, I. V., & Zelenskaya, M. S. (2009). Deterioration of carbo-nate rocks used for archeological monuments in Tauric Chersonesos (Crimea). Studia Universitatis Babeş-Bolyai, Geologia, 54(2), 13–16.

Nambiar, G. R., & Raveendran, K. (2008). A checklist of marine fungi from Kerala State, India. American-Eurasian Journal of Botany, 1(3), 73–77.

Nambiar, G. R., & Raveendran, K. (2015). Frequency of marine fungi on animal substrates along west coast of India. Current Research in Environmental and Applied Mycology, 5(4), 394–397.

Nambiar, G. R., Jaleel, C. A., & Raveendran, K. (2008). A comparative account of backwater and brackish water marine mycoflora of North Malabar (Kerala) In-dia. Comptes Rendus Biologies, 331(4), 294–297.

Orlova, T. I., Bulgakova, V. G., & Polin, A. N. (2017). Vtorichnye metabolity morskih mikroorganizmov. II. Morskie griby i ih sreda obitaniya [Secondary metabolites from marine microorganisms. II. Marine fungi and its environment]. Antibiotiki i Himioterapiya, 62(5–6), 68–76 (in Russian).

Pang, K.-L., Overy, D. P., Jones, E. B. G., Calado, M., Da, L., Burgaud, G., Walker, A. K., Johnson, J. A., Kerr, R. G., Cha, H.-J., & Bills, G. F. (2016). ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: To-ward a new consensual definition. Fungal Biology Reviews, 30(4), 163–175.

Pirkova, A. V. (2002). Porazhyonnost’ chernomorskih ustric rakovinnoj boleznyu. Profilaktika i selekciya na ustojchivost’ k zabolevaniyu [The infestation of Black Sea oysters with shell disease. Prevention and selection for disease resis-tance]. Rybnoe Hozyajstvo Ukrainy, 3(4), 45–47.

Pirkova, A. V., & Dyomenko, D. P. (2008). Sluchai rakovinnoj bolezni u gigantskoj ustricy Crassostrea gigas (Bivalvia), kultiviruemoj v Chernom more [Cases of shell disease in the Pacific giant oyster Crassostrea gigas (Bivalvia), cultivated in the Black Sea]. Biologiya Morya, 34(5), 359–364 (in Russian).

Pivkin, M. V., Aleshko, S. A., Krasohin, V. B., & Hudyakova, Y. V. (2006). Kom-pleksy gribov gubok u yuzhnogo poberezhya ostrova Sakhalin [Sponge fungi complexes off the southern coast of Sakhalin Island]. Biologiya Morya, 32(4), 249–254.

Popova, T. A., Vlasov, O. Y., Zelenskaya, M. S., & Panova, E. G. (2014). Bioobrastaniya granitnyh naberezhnyh Sankt-Peterburga [Biofouling of granite embankments in Saint Petersburg]. Vestnik of Saint Petersburg State University, 3(2), 30–40.

Raghukumar, C. (Ed.) (2012). Biology of marine fungi. Springer-Verlag, Berlin, Heidelberg.

Richards, T. A., Jones, M. D. M., Leonard, G., & Bas, D. (2012). Marine fungi: Their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522.

Sallenave-Namont, C., Pouchus, Y. F., Du Pont, T. R., Lassus, P., & Verbist, J. F. (2000). Toxigenic saprophytic fungi in marine shellfish farming areas. Mycopathologia, 149, 21–25.

Serova, T. A., & Titova, Y. A. (2014). Mikobiota drevesiny istoricheskih pamyatni-kov arhitektury Sankt-Peterburga i vozmozhnosti ee kontrolya s pomoshchyu fungicidov [Mycobiota of wood of historical architectural monuments of Saint Petersburg and the possibility of its control with fungicides]. Vestnik Zashchity Rastenij, 2, 33–37 (in Russian).

Svetlov, D. A., & Kachalov, A. N. (2019). Mikrobiologicheskaya korroziya stroi-tel’nykh materialov [Microbiological corrosion of building materials]. Trans-portnye Sooruzheniya, 4(6), 1–19 (in Russian).

Tamayo-Cevallos, R. (2020). Lignicolous marine fungi in mangrove ecosystem: State of knowledge and research perspective in Ecuador. Revista Ecuatoriana De Medicina Y Ciencias Biological, 41(2), 95–106.

Tibell, S., Tibell, L., Pang, K.-L., Calabon, M., & Jones, E. B. G. (2020). Marine fungi of the Baltic Sea. Mycology, 11(1), 1–19.

Vlasov, D. Y. (2011). Mikroskopicheskie griby v ekstremal’nyh mestoobitaniyah: biologicheskoe raznoobrazie i sushchnost’ vzaimodejstvij [Microscopic fungi in extreme locations: Biodiversity and the Nature of Interactions]. Biosfera, 3(4), 479–492 (in Russian).

Yakovleva, G., Sagadeev, E., Stroganov, V., Kozlova, O., Okunev, R., & Ilinskaya, O. (2018). Metabolic activity of micromycetes affecting urban concrete con-structions. The Scientific World Journal, 2018, 287.

Yarden, O. (2014). Fungal association with sessile marine invertebrates. Frontiers in Microbiology, 5, 228.

Zelenskaya, M. S., & Vlasov, D. Y. (2001). Mikromicety kamenistogo substrata ostrovov Belogo moray [Micromycetes from stony substrates of islands in the White Sea ]. Mikologiya i Fitopatologiya, 35(2), 15–18.

Zelenskaya, M. S., & Vlasov, D. Y. (2006). Mikromicety na pamyatnikah nacion-al’nogo zapovednika “Hersones Tavricheskij” (Krym) [Micromycetes on the monuments of the Tauric Chersonesos National Reserve (Crimea)]. Mikolo-giya i Fitopatologiya, 40(5), 370–376 (in Russian).

Zvereva, L. V., & Vysockaya, M. A. (2005). Micelial’nye griby – associanty dvust-vorchatyh mollyuskov iz zagryaznennyh biotopov Ussurijskogo zaliva Ya-ponskogo moray [Mycelial fungi – associates of bivalve mollusks from polluted biotopes of the Ussuri Bay of the Sea of Japan]. Biologiya Morya, 31(6), 443–446 (in Russian).

Published
2021-10-27
Section
Articles