Antimicrobial and therapeutic effect of probiotics in cases of experimental purulent wounds

  • L. P. Babenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
  • N. O. Tymoshok Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
  • L. A. Safronova Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
  • O. M. Demchenko Perynatalnyy Tsentr
  • G. M. Zaitseva Bogomolets National Medical University
  • L. M. Lazarenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
  • M. J. Spivak Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
Keywords: probiotic bacteria; preparation; bacilli; skin; infection; rabbits.


Probiotics based on bacteria of the genus Bacillus with a multifactorial mechanism of action are considered as a possible alternative to antibiotics in the treatment of purulent wounds. The aim of the study was to determine the antimicrobial and therapeutic effect of the Arederma probiotic preparation containing probiotic strains of the genus Bacillus in an experimental model of a purulent wound in animals. The antimicrobial efficacy of the probiotic against test strains and clinical isolates of pathogenic and opportunistic microorganisms was studied using the method of delayed antagonism. Staphylococcus aureus ATCC 6538 and Streptococcus pyogenes K-7 were used to model a purulent wound. From the surface of the wounds, bacteria of Staphylococcus, Streptococcus, Enterobacteriaceae, Pseudomonas genera and Enterobacteriaceae family were sown on appropriate selective media for the cultivation and enumeration of different groups of microorganisms by generally accepted microbiological research methods. The formation of a purulent wound in rabbits caused by mechanical skin damage and subsequent double infection with Staphylococcus aureus ATCC 6538 and Streptococcus pyogenes K-7 strains was accompanied with a pronounced inflammatory process, necrosis, the formation of purulent exudate and general intoxication. Representatives of the genera Staphylococcus and Streptococcus, microscopic fungi and, to a lesser extent, members of the family Enterobacteriaceae and Pseudomonas were found on the surface of purulent wounds, which confirmed the development of the infectious-inflammatory process. Treatment of purulent wounds with a suspension of probiotic preparation once a day for 4 days led to their faster healing (gradual attenuation of the inflammatory process, reduction of edema and discharge, as well as their disappearance) compared with untreated purulent wounds (control). Representatives of the Staphylococcus and Streptococcus genera, as well as microscopic fungi, presented in purulent wounds treated with probiotic preparation in much smaller numbers than in the control, and bacteria of the Pseudomonas genus and the Enterobacteriaceae family were not detected at all. The effective antimicrobial effect of this probiotic preparation against opportunistic and pathogenic microorganisms was confirmed by in vitro studies. Therefore, the Arederma probiotic preparation showed an effective therapeutic and antimicrobial effect in the experimental model of a purulent wound in animals, so it can be recommended for further preclinical and clinical studies.


Avishai, E., Yeghiazaryan, K., & Golubnitschaja, O. (2017). Impaired wound healing: Facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA Journal, 8(1), 23–33.

Bakulina, L. F., Timofeev, I. V., Perminova, N. G., Polushkina, A. F., & Pecherkina, N. I. (2001). Probiotiki na osnove sporoobrazuyushih mikroorganizmov roda Bacillus i ih primenenie v veterinarii [Probiotics based on spore-forming microorganisms of the genus Bacillus and their use in veterinary medicine]. Bittehnologiya, 2, 48–56 (in Russian).

Ben Ayed, H., Bardaa, S., Moalla, D., Jridi, M., Maalej, H., & Sahnoun, Z. (2015). Wound healing and in vitro antioxidant activities of lipopeptides mixture produced by Bacillus mojavensis A21. Process Biochemistry, 50(6), 1023–1030.

Ben David, N., Mafi, M., Nyska, A., Gross, A., Greiner, A., & Mizrahi, B. (2021). Bacillus subtilis in PVA microparticles for treating open wounds. ACS Omega, 6(21), 13647–13653.

Brown, D. F., & Perry, S. F. (1999). Methods used in the United Kingdom for the culture of microorganism. Journal of Clinical Pathology, 45, 468–474.

Cantón, R., Gijón, D., & Ruiz-Garbajosa, P. (2020). Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Current Opinion in Critical Care, 26(5), 433–441.

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology, 26(10), 302.

Chang, R. Y. K., Morales, S., Okamoto, Y., & Chan, H. K. (2020). Topical application of bacteriophages for treatment of wound infections. Translational Research, 220, 153–166.

Egorov, N. S. (1995). Posobie k prakticheskim zanyatiyam po mikrobiologii [A guide to practical classes in microbiology]. Izdatelstvo MGU, Moscow (in Russian).

Enikeev, R. R. (2011). Opisanie, biosintez i biologicheskoe deystvie polisaharida kefirnyih gribkov – kefirana [Description, biosynthesis and biological action of the polysaccharide of kefir fungi]. Biofarmokologicheskij Zhurnal, 3(3), 11–18 (in Russian).

Ermolenko, E. I., Isakov, V. A., Zhdan-Pushkina, S. H., & Tec, V. V. (2004). Kolichestvennaya ocenka antagonisticheskoj aktivnosti laktobacill [Quantitative assessment of lactobacilli antagonistic activity]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 5, 94–98 (in Russian).

Fijan, S., Frauwallner, A., Langerholc, T., Krebs, B., Ter Haar Née Younes, J. A., Heschl, A., Mičetić Turk, D., & Rogelj, I. I. (2019). Efficacy of using probiotics with antagonistic activity against pathogens of wound infections: An integrative review of literature. BioMed Research International, 2019, 7585486.

Francolini, I., Piozzi, A., & Donelli, G. (2019). Usnic acid: Potential role in management of wound infections. Advances in Experimental Medicine and Biology, 1214, 31–41.

Getahun, H., Smith, I., Trivedi, K., Paulin, S., & Balkhy, H. H. (2020). Tackling antimicrobial resistance in the COVID-19 pandemic. Bulletin of the World Health Organization, 98(7), 442–442A.

Guo, M., Wu, F., Hao, G., Qi, Q., Li, R., Li, N., Wei, L., & Chai, T. (2017). Bacillus subtilis improves immunity and disease resistance in rabbits. Frontiers in Immunology, 9(8), 354.

Jeżewska-Frąckowiak, J., Seroczyńska, K., Banaszczyk, J., Jedrzejczak, G., Żylicz-Stachula, A., & Skowron, P. M. (2018). The promises and risks of probiotic Bacillus species. Acta Biochimica Polonica, 65(4), 509–519.

Kabanangi, F., Joachim, A., Nkuwi, E. J., Manyahi, J., Moyo, S., & Majigo, M. (2021). High level of multidrug-resistant gram-negative pathogens causing burn wound infections in hospitalized children in dar es salaam, tanzania. International Journal of Microbiology, 2021, 6644185.

Kalynovskyj, G. M., Zhylyxivskyj, A. S., Kudryavcev, V. O., Mishhenko, I. P., Mishyn, V. T., Korejba, L. V., & Rusak, V. S. (2000). Klinichne zastosuvannia probiotyka endosporynu u veterynariji. Rekomendaciji dlya likariv veterynarnoji medycyny [Clinical use of the probiotic endosporin in veterinary medicine. Recommendations for veterinarians]. Kyiv (in Ukrainian).

Kordon, T. I. (2014). Pryncypy stvorennia, mehanizm diji ta klinichne zastosuvannia probiotykiv (ogliad) [Principles of creation, mechanism of action and clinical application of probiotics (review)]. Litopys Instytutu Mechnykova, 4, 8–16 (in Ukrainian).

Krasilnikov, A. P. (1995). Spravochnik po antiseptike [Handbook of antiseptics]. Sredniaja Shkola, Minsk (in Russian).

Krivoshein, Y. S. (Ed.). (1986). Rukovodstvo k prakticheskim zanyatiyam po medicinskoj mikrobiologii i laboratornoj diagnostike infekcionnyh boleznej [Guide to practical classes in medical microbiology and laboratory diagnosis of infectious diseases]. Vysshaja Shkola, Kiev (in Russian).

Kumar, S., Anwer, R., & Azzi, A. (2021). Virulence potential and treatment options of multidrug-resistant (mdr) Acinetobacter baumannii. Microorganisms, 9(10), 2104.

Kuzin, M. I., & Kostyuchenok, B. M. (1990). Rany i ranevaya infekciya [Wounds and wound infection]. Medicina, Moscow (in Russian).

Lai, C. C., Chen, S. Y., Ko, W. C., & Hsueh, P. R. (2021). Increased antimicrobial resistance during the COVID-19 pandemic. International Journal of Antimicrobial Agents, 57(4), 106324.

Lebedev, K. A., & Ponyakina, I. D. (1990). Immunogramma v klinicheskoj praktike [Immunogram in clinical practice]. Nauka, Moscow (in Russian).

Lee, H. S., & Lee, H. (2011). Purification and biochemical characterization of bacteriolytic enzyme from Bacillus subtilis YU-1432 active against Porphyromonas gingivalis. Journal of the Korean Society for Applied Biological Chemistry, 54(4), 600–605.

Lee, N. K., Kim, W. S., & Paik, H. D. (2019). Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Science and Biotechnology, 28(5), 1297–1305.

Lee, N. K., Son, S. H., Jeon, E. B., Jung, G. H., Lee, J. Y., & Paik, H. D. (2015). The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. Journal of Functional Foods, 14, 513–518.

Lombardi, F., Palumbo, P., Augello, F. R., Cifone, M. G., Cinque, B., & Giuliani, M. (2019). Secretome of adipose tissue-derived stem cells (ascs) as a novel trend in chronic non-healing wounds: An overview of experimental in vitro and in vivo studies and methodological variables. International Journal of Molecular Sciences, 20(15), 3721.

Lv, P., Song, Y., Liu, C., Yu, L., Shang, Y., Tang, H., Sun, S., & Wang, F. (2020). Application of Bacillus subtilis as a live vaccine vector: A review. Journal of Veterinary Medical Science, 82(11), 1693–1699.

Matsuzaki, Т., & Chin, J. (2000). Modulating immune response with probiotic bacteria. Immunology and Cell Biology, 78(1), 67–73.

Mazzoli, A., Donadio, G., Lanzilli, M., Saggese, A., Guarino, A. M., Rivetti, M., Crescenzo, R., Ricca, E., Ferrandino, I., Iossa, S., Pollice, A., & Isticato, R. (2019). Bacillus megaterium SF185 spores exert protective effects against oxidative stress in vivo and in vitro. Scientific Reports, 9(1), 12082.

McCallin, S., Sarker, S. A., Sultana, S., Oechslin, F., & Brüssow, H. (2018). Metagenome analysis of Russian and Georgian pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environmental Microbiology, 20(9), 3278–3293.

Nikitenko, V. I., & Guryanov, A. M. (2008). Ispolzovanie produciruyushego antibiotiki probiotika Sporobakterin pri lechenii obozhzhennyh [The use of the antibiotic-producing probiotic Sporobacterin in the treatment of burns]. Medicinskij Almanah, 5, 218–220 (in Russian).

Nikitenko, V. I. (2004). Infection prophylactics of gunshot wounds using probiotics. Journal of Wound Care, 13(9), 363–366.

Nolan, V. C., Harrison, J., Wright, J. E. E., & Cox, J. A. G. (2020). Clinical significance of manuka and medical-grade honey for antibiotic-resistant infections: A systematic review. Antibiotics, 9(11), 766.

Nuttawut, K., Chaniga, C., Chiravoot, P., & Sarote, S. (2012). Production of Poly-γ-glutamic acid by Bacillus licheniformis: Synthesis and characterization. Journal of Metals, Materials and Minerals, 22(2), 7–11.

Petruk, G., Donadio, G., Lanzilli, M., Isticato, R., & Monti, D. M. (2018). Alternative use of Bacillus subtilis spores: Protection against environmental oxidative stress in human normal keratinocytes. Scientific Reports, 8(1), 1745.

Pohilenko, V. D., & Perelygin, V. V. (2007). Probiotiki na osnove sporoobrazujushih bakterij i ih bezopasnost [Probiotics based on spore-forming bacteria and their safety]. Himicheskaya i Biologicheskaya Bezopasnost, 2(3), 32–33 (in Russian).

Punjataewakupt, A., Napavichayanun, S., & Aramwit, P. (2019). The downside of antimicrobial agents for wound healing. European Journal of Clinical Microbiology and Infectious Diseases, 38(1), 39–54.

Ramanathan, T., Ahmad, A., Shamsuddin, A., Kalimutho, A., & Kalimutho, M. (2011). Taxonomical identity and polysaccharide produced by Bacillus species isolated from old aged medicinal decoctions. Journal of Sustainability Science and Management, 6(1), 2–9.

Reznikov, O. (2001). Problemy etyky pry provedenni eksperymentalnyx medychnyx i biologichnyx doslidzhen na tvarynax [Problems of ethics in conducting experimental medical and biological research on animals]. Visnyk Nacionalnoj Akademiyi Nauk Ukrajiny, 11, 30–33 (in Ukrainian).

Safronova, L. A. (2015). Biologicheskaya aktivnost probioticheskih shtammov bacill – osnovy preparata endosporina [Biological activity of probiotic strains of bailli- based on the preparation endosporin]. Doklady Nacionalnoj Akademii Nauk Ukrainy, 6, 138–146 (in Russian).

Safronova, L. A., Ilyash, V. M., Safronova, L. S., Skorochod, I. A., & Ilyash, V. M. (2021). Antioxidant and antiradical properties of probiotic strains Bacillus amyloliquefaciens ssp. plantarum. Probiotics and Antimicrobial Proteins, 13(6), 1585–1597.

Safronova, L. A., & Ilyash, V. M. (2017). Biosinteticheskaya aktivnost bacill, obuslavlivayushaya ih probioticheskij effekt [Biosynthetic activity of bacilli, causing their probiotic effect]. Mikrobiologicheskij Zhurnal, 79(6), 120–136 (in Russian).

Sang, Y., & Blecha, F. (2008). Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Animal Health Research Reviews, 9(2), 227–235.

Savitskaya, I. S., Shokatayeva, D. H., Kistaubayeva, A. S., Ignatova, L. V., & Digel, I. E. (2019). Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon, 5(10), e02592.

Shahsafi, M. (2017). The effects of Bacillus subtilis probiotic on cutaneous wound healing in rats. Novelty in Biomedicine, 5(1), 43–47.

Shahzad, F., Ahmad, S., Ahmad, H., & Abdur Rashid, Q. (2015). Production of proteases by genetically improved Bacillus subtilis for enhanced skin penetration of antibacterial topical formulation. Journal of Biotechnology and Biomaterials, 5(2), 1–10.

Sinclair, R. D., & Ryan, T. J. (1994). Proteolytic enzymes in wound healing: the role of enzymatic debridement. Australasian Journal of Dermatology, 35(1), 35–41.

Sorokina, V. O., Minasov, B. S., Popova, O. V., & Popov, O. S. (2013). Primenenie sporobakterina v lechenii pacientov s ozhogovymi ranami [The use of sporobacterin in the treatment of patients with burn wounds]. Medicinskij Vestnik Bashkortostana, 8(6), 106–108 (in Russian).

Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857.

Sumi, C. D., Yang, B. W., Yeo, I. C., & Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 93–103.

Tsiouris, C. G., Kelesi, M., Vasilopoulos, G., Kalemikerakis, I., & Papageorgiou, E. G. (2017). The efficacy of probiotics as pharmacological treatment of cutaneous wounds: Meta-analysis of animal studies. European Journal of Pharmaceutical Sciences, 104, 230–239.

Tymoshok, N. O., Ageev, V. O., Derevyanko, S. V., & Spivak, M. Y. (2006). Vplyv Bacillus subtilis na nespecyfichnu rezystentnist’ organizmu [Influence of Bacillus subtilis on nonspecific resistance of an organism]. Imunologiya ta Alergologiya, 3, 61–65 (in Ukrainian).

van Dyk, J. S., Low Ah Kee, N., Frost, C. L., & Pletschke, B. I. (2012). Extracellular polysaccharide production in Bacillus licheniformis SVD1 and its immunomodulatory effect. BioResources, 7(4), 4976–4993.

Villarroel, J., Larsen, M. V., Kilstrup, M., & Nielsen, M. (2017). Metagenomic analysis of therapeutic PYO phage cocktails from 1997 to 2014. Viruses, 9(11), 328.

Vinnik, Y. S., Peryanova, O. P., & Yakimov, S. V. (1998). The treatment method of purulent wounds with the use of antagonists. International Journal on Immunorehabilitation, 4, 143.

Yu, Y., Dunaway, S., Champer, J., Kim, J., & Alikhan, A. (2020). Changing our microbiome: Probiotics in dermatology. British Journal of Dermatology, 182(1), 39–46.

Zapadnyuk, I. P. (Ed.). (1983). Laboratornye zhivotnye: Razvedenie, soderzhanie, ispolzovanie v eksperimente [Laboratory animals: Breeding, maintenance, use in the experiment]. Visha Shkola, Kiev (in Russian).

Zouari, R., Ben Abdallah-Kolsi, R., Hamden, K., Feki, A. E., Chaabouni, K., & Makni-Ayadi, F. (2015). Assessment of the antidiabetic and antilipidemic properties of Bacillus subtilis SPB1 biosurfactant in alloxan-induced diabetic rats. Biopolymers, 104(6), 764–774.

Zouari, R., Moalla-Rekik, D., Sahnoun, Z., Rebai, T., Ellouze-Chaabouni, S., & Ghribi-Aydi, D. (2016). Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant. Biomedicine and Pharmacotherapy, 84, 878–891.