Retrospective analysis of the spread of bacterial poultry diseases on the territory of Ukraine for the period 2012–2020

  • O. M. Chechet State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • V. V. Ukhovskyi Bila Tserkva National Agrarian University
  • L. Y. Korniienko State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • A. V. Pyskun State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • V. L. Kovalenko State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • O. S. Haidei State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • O. I. Gorbatiuk State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • O. A. Moroz State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
Keywords: poultry farming; nosological profile; epizootology; bacteriological research; monitoring; mapping


One of the most important livestock industries in the world is poultry breeding, which meets human needs for high-quality protein products (poultry meat, eggs) and is characterized by rapid return on investment. Bacterial infectious diseases of poultry are a major problem for the poultry industry and its strategic future. Given the relevance of bacterial diseases of poultry in the world and in Ukraine in particular, the authors conducted a retrospective analysis of the spread of these diseases in Ukraine for the period 2012–2020 by analyzing and systematizing the results of bacteriological investigations. In order to analyze the spread of bacterial diseases of poultry in terms of regions in Ukraine, we analyzed data on 20 diseases of poultry, namely: hemophilosis, infectious enterotoxemia, yersiniosis, campylobacteriosis, colibacteriosis, coligranulomatosis, klebsiella, listeriosis, mycoplasmosis, neisseriosis, pasteurellosis, pathogenic proteus, pneumococcosis, pseudomonosis, pullorosis, erysipelas septicemia, salmonellosis, staphylococcosis, streptococcosis and tuberculosis. According to the results of research, it is found that bacterial diseases of poultry are significantly common in Ukraine, the average infection of poultry with bacterial diseases for the period from 2012 to 2020 was 0.8%. The leading role in the etiological structure of pathogens of bacterial diseases of poultry was played by colibacillosis – 56.9% of the total number of all positive samples. Also, the dominant bacterial diseases of poultry in Ukraine during the analyzed period are: salmonellosis (13.5%), staphylococcosis (7.8%), pasteurellosis (7.0%), pseudomonosis (6.8%), pullorosis (3.6%) and streptococcus (2.6%). Significantly fewer positive samples were registered in the bacteriological investigations of other diseases: pneumococcosis 0.5%, tuberculosis 0.4%, infectious enterotoxemia 0.3%, pathogenic proteus 0.2%, erysipelas septicemia 0.1%, klebsiellosis 0.1%, listeriosis 0.1%, neisseriosis 0.08%, coligranulomatosis 0.05% and hemophilosis 0.02%. According to the results of bacteriological research of poultry for such diseases as yersiniosis, campylobacteriosis and mycoplasmosis – no positive test was found for the entire analyzed period. According to the results of ecological and geographical analysis, the heterogeneity of the nosological profile of bacterial diseases of poultry in different regions of Ukraine was established.


Azad, M., Rahman, M. M., Amin, R., Begum, M., Fries, R., Husna, A., Khairalla, A. S., Badruzzaman, A., El Zowalaty, M. E., Lampang, K. N., Ashour, H. M., & Hafez, H. M. (2019). Susceptibility and multidrug resistance patterns of Escherichia coli isolated from cloacal swabs of live broiler chickens in Bangladesh. Pathogens, 8(3), 118.

Bakulin, V. A. (2016). Veterinarnaya bezopasnost’ – garantiya zdoroviya pticy [Veterinary safety is a guarantee of poultry health]. Poultry Farming, 1, 53–56 (in Russian).

Barrow, P. A., & Freitas Neto, O. C. (2011). Pullorum disease and fowl typhoid – new thoughts on old diseases: A review. Avian Pathology, 40(1), 1–13.

Bitzan, M., Ludwig, K., Klemt, M., König, H., Büren, J., Müller-Wiefel, D. E. (1993). The role of Escherichia coli O 157 infections in the classical (enteropathic) haemolytic uraemic syndrome: Results of a Central European, multicentre study. Epidemiology and Infection, 110(2), 183–196.

Bobyleva, G. A. (2013). Pticevodstvo Rossii: Celevaya programma razvitiya do 2015 goda [Poultry in Russia: Target program of the development to 2015]. Poultry and Poultry Products, 1, 4–6 (in Russian).

Borisenkova, A. N., & Novikova, O. B. (2014). O kontrole bakterial’nykh boleznej ptic [Control of bacterial diseases in poultry]. Agricultural News, 4, 57 (in Russian).

Carenzi, C., & Verga, M. (2009). Animal welfare: Review of the scientific concept and definition. Italian Journal of Animal Science, 8, 21–30.

Cox, N. A., Cason, J. A., & Richardson, L. J. (2011). Minimization of Salmonella contamination on raw poultry. Annual Review of Food Science and Technology, 2, 75–95.

El-Adawy, H., Ahmed, M. F., Hotzel, H., Tomaso, H., Tenhagen, B. A., Hartung, J., Neubauer, H., & Hafez, H. M. (2015). Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli recovered from organic turkey farms in Germany. Poultry Science, 94(11), 2831–2837.

El-Adawy, H., Hotzel, H., Düpre, S., Tomaso, H., Neubauer, H., & Hafez, H. M. (2012). Determination of antimicrobial sensitivities of Campylobacter jejuni isolated from commercial turkey farms in Germany. Avian Diseases, 56(4), 685–692.

Hafez, H. M. (2010). Poultry health looking ahead to 2034. World Poultry, 25, 16–17.

Hafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Frontiers in Veterinary Science, 7, 516.

Jeni, R. E., Dittoe, D. K., Olson, E. G., Lourenco, J., Seidel, D. S., Ricke, S. C., & Callaway, T. R. (2021). An overview of health challenges in alternative poultry production systems. Poultry Science, 100(7), 101173.

Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., & Man, S. M. (2015). Global epidemiology of Campylobacter infection. Clinical Microbiology Reviews, 28(3), 687–720.

Line, J. E., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Levchuk, V. P., Svetoch, O. E., Seal, B. S., Siragusa, G. R., & Stern, N. J. (2008). Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 52(3), 1094–1100.

Lytvyn, V. P., Oliinyk, L. V., Korniienko, L. I., Yarchuk, B. M., Dombrovskyi, O. B., & Korniienko, L. M. (2002). Faktorni khvoroby silskohospodarskykh tvaryn [Factor diseases of farm animals]. In: Lytvyn, V. P., & Korniienko, L. I. (Eds.). Agrarian science. Kyiv (in Ukrainian).

Maasjost, J., Mühldorfer, K., Cortez de Jäckel, S., & Hafez, H. M. (2015). Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian Diseases, 59(1), 143–148.

Mead, G., Lammerding, A. M., Cox, N., Doyle, M. P., Humbert, F., Kulikovskiy, A., Panin, A., Nascimento, V. P., & Wierup, M. (2010). Scientific and technical factors affecting the setting of Salmonella criteria for raw poultry: A global perspective. Journal of Food Protection, 73(8), 1566–1590.

Moawad, A. A., Hotzel, H., Awad, O., Roesler, U., Hafez, H. M., Tomaso, H., Neubauer, H., & El-Adawy, H. (2019). Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: First report of linezolid resistance. Microorganisms, 7(10), 476.

Moawad, A. A., Hotzel, H., Neubauer, H., Ehricht, R., Monecke, S., Tomaso, H., Hafez, H. M., Roesler, U., & El-Adawy, H. (2018). Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: Emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli. Gut Pathogens, 10, 39.

Nguyen, T. N., Hotzel, H., Njeru, J., Mwituria, J., El-Adawy, H., Tomaso, H., Neubauer, H., & Hafez, H. M. (2016). Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya. Gut Pathogens, 8(1), 39.

Novikova, O. B., & Pavlova, M. A. (2018). Mikroflora, vydelyaemaya v pticekhozyajstvakh razlichnogo tekhnologicheskogo napravleniya i kontrol’ bakterial’nykh boleznej ptic [Microflora isolated in poultry farms of various technological directions and control of bacterial diseases of poultry]. Issues of Regulatory and Legal Regulation in Veterinary Medicine, 3, 34–36 (in Russian).

Pires, S. M., Vieira, A. R., Hald, T., & Cole, D. (2014). Source attribution of human salmonellosis: An overview of methods and estimates. Foodborne Pathogens and Disease, 11(9), 667–676.

Reuben, R. C., Sarkar, S. L., Roy, P. C., Anwar, A., Hossain, M. A., & Jahid, I. K. (2021). Prebiotics, probiotics and postbiotics for sustainable poultry production. World’s Poultry Science Journal, 77, 825–882.

Richter, A., Sting, R., Popp, C., Rau, J., Tenhagen, B. A., Guerra, B., Hafez, H. M., & Fetsch, A. (2012). Prevalence of types of methicillin-resistant Staphylococcus aureus in turkey flocks and personnel attending the animals. Epidemiology and Infection, 140(12), 2223–2232.

Rozhdestvenskaya, T. N., Pankratov, A. V., Ruzina, A. V., & Novikova, O. V. (2020). Respiratornyj sindrom – otkrytye vorota dlya infekcii [Respiratory syndrome – an open gateway to infection]. Poultry and Poultry Products, 6, 40–42 (in Russian).

Sánchez-Salazar, E., Gudiño, M. E., Sevillano, G., Zurita, J., Guerrero-López, R., Jaramillo, K., & Calero-Cáceres, W. (2020). Antibiotic resistance of Salmonella strains from layer poultry farms in Central Ecuador. Journal of Applied Microbiology, 128, 1347–1354.

Shurakhova, Y. N., Plitov, I. S., Kalmykov, M. V., & Vitkova, O. N. (2010). Ehtiologicheskaya struktura bakterial’nykh boleznej ptic po dannym otchetov vetlaboratorij Rossijskoj Federacii za 2009 god [Etiological structure of bacterial diseases of poultry according to the reports of veterinary laboratories of the Russian Federation for 2009]. In: VI International Veterinary Poultry Congress. Pp. 102–103 (in Russian).

Skarp, C., Hänninen, M. L., & Rautelin, H. (2016). Campylobacteriosis: The role of poultry meat. Clinical Microbiology and Infection, 22(2), 103–109.

Sukumaran, S. K., & Prasadarao, N. V. (2003). Escherichia coli K1 invasion increases human brain microvascular endothelial cell monolayer permeability by disassembling vascular-endothelial cadherins at tight junctions. The Journal of Infectious Diseases, 188(9), 1295–1309.

Turtoi, M., & Borda, D. (2014). Decontamination of eggshells using ultraviolet light treatment. World’s Poultry Science Journal, 70(2), 265–277.

Van Immerseel, F., De Buck, J., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. (2004). Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathology, 33(6), 537–549.

Walker, S., & Baum, J. I. (2022). Eggs as an affordable source of nutrients for adults and children living in food-insecure environments. Nutrition Reviews, 80(2), 178–186.

Wei, B., Cha, S. Y., Zhang, J. F., Shang, K., Park, H. C., Kang, J., & Jang, H. K. (2020). Antimicrobial susceptibility and association with toxin determinants in Clostridium perfringens isolates from chickens. Microorganisms, 8(11), 1825.

Williams, R. B. (2005). Intercurrent coccidiosis and necrotic enteritis of chickens: Rational, integrated disease management by maintenance of gut integrity. Avian Pathology, 34(3), 159–180.

Xu, X., Sun, Q., & Zhao, L. (2019). Virulence factors and antibiotic resistance of avian pathogenic Escherichia coli in Eastern China. Journal of Veterinary Research, 63(3), 317–320.