The quantitative composition of micromycetes under cereal crops in chernozem soils in the Left-Bank Forest Steppe of Ukraine

  • I. V. Beznosko Institute of Agroecology and Environmental Management of NAAS
  • T. M. Gorgan Institute of Agroecology and Environmental Management of NAAS
  • I. I. Mosiychuk Institute of Agroecology and Environmental Management of NAAS
  • L. V. Havruliuk Institute of Agroecology and Environmental Management of NAAS
  • O. I. Buniak Nosiv Selection and Research Station of the Myronivka Institute of Wheat of the name V. M. Remesla NAAS
Keywords: soil mycobiota; agrocenosis; number of micromycetes; hydrothermal coefficient; the root secretions of the plants; correlation coefficient


Soil microorganisms are an important component of agrocenoses, which due to physiological and genetic features respond quickly to changes in the quality of the soil environment. Each plant in the rhizosphere forms a specific composition of the microflora which depends on the phase of plant development and soil-climatic conditions. The objective of our study was the quantitative composition of ecological and trophic groups of rhizosphere soil micromycetes of different crops in chernozem soils in the Left-Bank Forest Steppe of Ukraine. According to the results of research, it was determined that the rhizosphere soil under different crops – winter wheat, rye and oats in Chernihiv region – is characterized by the largest number of pedotrophic micromycetes. This indicates that the soil contains a sufficient amount of organic matter. The rhizosphere soils under winter wheat and spring barley in Kiev region were characterized by a larger number of pathogenic micromycetes and amylolytic and cellulolytic ecological-trophic groups. This indicates the intensive use of plant protection products. The rhizosphere soil under onions in experimental fields in Kharkiv region was characterized by a high number of the cellulolytic group. This indicates the presence of cellulose-destroying microorganisms. According to the results of statistical analysis, it was found that the number of micromycetes in the rhizosphere soil of the studied varieties of crops was in direct correlation with the value of the hydrothermal coefficient (НTC) in the vegetation period. Weather conditions during the research vegetation period differed by agrometeorological indicators. The characteristic feature was a contrast of differences in air temperature and unequal distribution of rainfall, which affected the composition of the soil mycobiocenosis. The vegetation period of 2021 in Kyiv region was characterized by a sufficiently moist hydrothermal coefficient which increased to1.81 while in Chernihiv, Kharkiv regions drought prevailed, but in some months the HTC increased to 1.32–1.54. It has been shown that the higher the HTC, the greater the number of micromycetes in all study regions.


Aislabie, J., Deslippe, J. R., & Dymond, J. (2013). Soil microbes and their contribution to soil services. In: Dymond, J. (Ed.). Ecosystem services in New Zealand: Conditions and trends. Manaaki Whenua Press, Lincoln. Pp. 143–161.
Antonyak, G. L., Kalinets-Mamchur, Z. I., Dudka, I. O., Babych, N. O., & Panas, N. E. (2013). Ekologіja gribіv [Mushroom ecology]. Ivan Franko LNU, Lviv (in Ukrainian).
Banerjee, S., Helgason, B., Wang, L., Winsley, T., Ferrari, B., & Siciliano, S. (2016). Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biology and Biochemistry, 95, 40–50.
Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188–198.
Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74(3), 738–744.
Bruinsma, M., Kowalchuk, G. A., & Veen, J. A. (2003). Effects of genetically modified plants on microbial communities and processes in soil. Biology and Fertility of Soils, 37(6), 329–337.
Brygadyrenko, V. V., & Nazimov, S. S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. Zookeys, 481, 57–68.
Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiersin Plant Science, 6, 1020.
Colin, K. C., Elizabeth, M. J., & David, W. W. (2013). Identification of pathogenic fungi. 2nd edition. Health Protection Agency, Wiley-Blackwell.
Davey, M. E., & O’Toole, G. A. (2001). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64(4), 847–867.
Demchenko, M. M. (2008). Rizosfernye mikroorganizmy v sisteme pochva-rasteniye [Rhizosphere microorganisms in the soil-plant system]. Proceedings of the Nizhnevolzhsky Agro-University Complex: Science and Higher Professional Education, 3(11), 15–18 (in Russian).
Demirel, R., Lilhan, S., Asan, A., Kinaci, E., & Oner, S. (2005). Microfungi in cultivated fields in Еskisehir provience (Turkey). Journal of Basic Microbiology, 45(4), 279–293.
Demyanyuk, О. S., Symochko, L. Y., & Tertychna, O. V. (2017). Suchasni metodychni pidkhody do otsiniuvannia ekolohichnoho stanu gruntu za aktyvnistiu mikrobiotsenozu [Modern methodological approaches to evaluation of the ecological condition of soil by microbial activity]. Problems of Bioindications and Ecology, 22(1), 55–68 (in Ukrainian).
Dobrovolsky, G. V., & Nikitin, E. D. (2012). Ekologiya pochv [Soil ecology]. Moscow University Publishing House, Moscow (in Russian).
Dragomir, L. B., & Nicolae, E. D (2015). Researches regarding the physiology of lavendear plants grown on soils with different pH values. Annals of the University of Craiova – Agriculture, Montanology, Cadastre Series, 45(1), 45–50.
Ellanska, N. E., Skrypka, G. I., & Yunosheva, O. P. (2017). Mikrobni hrupy ta biolohichna aktyvnist korenevoho gruntu roslyn Phlox paniculata L. [Microbial groups and biological activity of the root soil of plants Phlox paniculata L.]. Visnyk of Odessa National University, 22(2), 67–75 (in Ukrainian).
Guaro, J., Gene, J., Stchigel, M., & Figueras, A. M. (2012). Atlas of soil Ascomycetes. Universitat Roviro I Vigili Reus, Spain.
Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293–320.
Iutynskaya, G. O. (2006). Mikrobiolohiya gruntu [Soil microbiology]. KNU, Kyiv (in Ukrainian).
John, I. P., & Hocking, A. D. (2009). Fungi and food spoilage. 3rd ed. Springer, London, New York.
Kaminsky, V. F., & Buslaeva, N. G. (2011). Osnovy prykladnoho matematychnoho analizu v silskohospodarskykh doslidzhennyakh [Fundamentals of applied mathematical analysis in agricultural research]. Edelweiss, Kyiv (in Ukrainian).
Kirschboum, M. U. F. (2006). The temperature dependence of organic-matter decomposition – still a topic of debate. Soil Biology and Biochemistry, 38(9), 2510–2518.
Kopylov, E. P. (2012). Gruntovi hryby yak biolohichnyj faktor vplyvu na roslyny [Soil fungi as a biological factor influencing plants]. Agricultural Microbiology, 15–16, 7–28 (in Ukrainian).
Kostyuchenko, N. I., & Lyakh, V. A. (2017). Peculiarities of taxonomic structure of micromycete complex in root zone of sunflower in conditions of Southern Steppe of Ukraine. Helia, 40(67), 147–159.
Koval, E. Z., Rudenko, A. V., & Voloshchuk, N. M. (2016). Penitsylii: Posibnyk z identyfikatsii 132 vydiv (redutsentiv, destruktoriv, patoheniv, produtsentiv) [Penicillii: A laboratory guide to identification of 132 common species (reducents, destructors, pathogens, producents)]. National Research Research and Restoration Center of Ukraine, Kyiv (in Ukrainian).
Kurdish, I. K. (2009). Rol mikroorhanizmiv u vidtvorenni rodyuchosti gruntu [The role of microorganisms in the reproduction of soil fertility]. Agricultural Microbiology, 9, 7–32 (in Ukrainian).
Markov, I. L., Pasichnyk, L. P., & Gentosh, D. T. (2012). Praktykum iz osnov naukovykh doslidzhen’ u zakhysti roslyn [Workshop on the basics of scientific research in the plant protection]. KNU, Kyiv (in Ukrainian).
McDaniel, M. D., Kaye, J. P., & Kaye, M. W. (2013). Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology and Biochemistry, 56, 90–98.
Medkov, A. I., Stefanovska, T. R., & Borodai, V. V. (2021). Optimization of the micromycete cultivation process – basics of growth regulators and biotesting their growth-stimulating activity concerning to Miscanthus giganteus. Agrology, 4(1), 40–46.
Mirchink, T. G. (1988). Pochvennaya mikologija [Soil mycology]. Moscow State University Publishing House, Moscow (in Russian).
Mishustin, E. N. (1972). Mikroorganizmy i produktivnost’ sel’s’kogo khozyaystva [Microorganisms and productivity of agriculture]. Nauka, Moscow (in Russian).
Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670.
Netrusov, A. I., Egorova, M. A., Zakharchuk, L. M., & Kolotilova, N. N. (2005). Praktikum po mikrobiologii [Practical work on microbiology]. Academy, Moscow (in Russian).
Pandey, S. N., Abid, M., & Khan, A. A. (2018). Diversity, functions, and stress responses of soil microorganisms. In: Egamberdieva, D., & Ahmad, P. (Eds.). Plant microbiome: Stress response. Part of the Microorganisms for Sustainability book series, 5, 1–19.
Patyka, M. V., & Kolodiazhniy, O. Y. (2014). Formuvannya mikrobnoho kompleksu chornozemu typovoho v ahrotsenozi ozymoji pshenytsi za riznykh system zemlerobstva [Formation of microbial complex of typical chernozem in agrocenosis of winter wheat under different systems of agriculture]. Bulletin of the Poltava State Agrarian Academy, 73(2), 26–33 (in Ukrainian).
Patyka, N. V., & Patyka, V. F. (2013). Sovremennye problemy byoraznoobrazija [Modern problems of biodiversity]. Feed and Feed Production, 76, 10–109 (in Ukrainian).
Peraica, M., Domijan, A.-M., Cvjetkovic, B., & Zeljko, J. (2002). Prevention of exposure to mycotoxins from food and feed. Arhiv za Higijenu Rada I Toksicology, 53(3), 229–237.
Pida, S. V., & Mashkovsjka, S. P. (2003). Korenevi vydilennia: Khimichnyj sklad, znachennia v alelopatiji ta perspektyvy vykorystannya [Root isolation and chemical composition are important in allelopathy and prospects for use]. Agroecological Journal, 3, 47–51 (in Ukrainian).
Polyak, Y. M., & Sukharevich, V. I. (2019). Allelopaticheskie vzaimootnoshenija rastenij i mikroorganizmov v pochvennykh ekosistemakh [Allelopathic relationships of plants and microorganisms in soil ecosystems]. Successes of Modern Biology, 139(2), 147–160 (in Russian).
Polyanskya, L. M., Sukhanova, N. I., & Chakmyazyan, K. V. (2012). Osobennosti izmeneniya struktury mikrobnoj biomassy pochv v usloviyakh zalezhi [Features of changes in the structure of soil microbial biomass under fallow conditions]. Journal of Soil Science, 7, 792–798 (in Russian).
Roy, A. A., Zaloilo, O. V., Chernova, L. S., & Kurdish, I. K. (2005). Antagonistic activity of phosphate-mobilizing bacilli to phytopathogenic fungi and bacteria. Agroecological Journal, 1, 50–55 (in Ukrainian).
Shevchenko, I. P. (2006). Vlijanije sposobov vozdelyvanija i vnesenija udobrenij na sostojanije mikrobnogo tsenoza i fitotoksicheskije svojstva chernozema tipichnogo erodirovannogo [Influence of ways of cultivation and fertilization on the state of microbial cenosis and phytotoxic properties of typical eroded chornozem]. Bulletin of Agricultural Science, 10, 12–15 (in Ukrainian).
Suseela, V., Conant, R. T., Wallenstein, M. D., & Dukes, J. S. (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18, 336–348.
Ternovy, Y., Gavlyuk, V., & Parfenyuk, A. (2018). Ekolohichno bezpechni akrotekhnolohiji [Ecologically safe achrotechnologies]. Agroecological Journal, 4, 50–58 (in Ukrainian).
Tsuneo, W. (2010). Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. Third edition. Boca Raton.
Volkogon, V. V. (2018). Agricultural microbiology in Ukraine: Achievements, problems, prospects. Bulletin of Agricultural Science, 11, 20–27 (in Ukrainian).
Yang, C. H., & Crowley, D. E. (2000). Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Environmental Microbiology, 66(1), 345–351.
Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., & Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.
Zhdanova, N. M. (2002). Monitorynh miksomitsetiv pry vyznachenni sanitarnoho stanu gruntiv. Ahroekolohichnyy monitorynh ta pasportyzatsiya silskohospodarskykh uhid [Monitoring of myxomycetes in determining the sanitary condition of soils. Agroecological monitoring and certification of agricultural lands]. Phytosociocenter, Kyiv (in Ukrainian).
Zvyagintsev, D. H. (1991). Metody pochvennoy mikrobiologii i biokhimii [Methods of soil microbiology and biochemistry]. Moscow State University Press, Moscow (in Russian).