Influence of air temperature and humidity on Stratiolaelaps scimitus (Acari, Mesostigmata) locomotor activity in a laboratory experiment

  • V. S. Moshkin Bioprotection
  • V. V. Brygadyrenko Dnipro State Agrarian and Economic University
Keywords: exploratory activity; migration activity; thermo-preferendum; hygro-preferendum; biological method of plant protection; zoophages; litter fauna

Abstract

Stratiolaelaps scimitus (Womersley, 1956) (Acari, Mesostigmata, Laelapidae) is a predatory soil mite massively produced in laboratories in many countries of the world. The existing spheres of S. scimitus application vary in many parameters, especially temperature and relative humidity. In this article, we analyzed temperature and humidity appropriate for fastest spread of soil predatory mite S. scimitus. Mites should be released to a new environment in such a way that they would distribute in a greenhouse, garden or field as fast as they can (i.e. providing maximum migration activity of S. scimitus), on the one hand, and provide maximum efficient control of number of target phytophage species (i.e. providing maximum trophic activity), on the other hand. In our experiment, at 14 ºC temperature, most specimens of S. scimitus did not leave the migratory circle for 10 seconds. In 15–19 ºC range, only 14.7% of mites left the migratory circle, and their examined activity in 10 s was only 5–10 mm. In 20–24 ºC range, 27.5% of mites left the migratory circle, their migratory activity increased to 15–23 mm. In 25–33 ºC range, the moving activity increased even more, the mites left the migratory circle at the first opportunity that had (some even jumped off the circle to the experimental field), 95.8% of the mites left the circle in 10 s, their examined activity reached 25–60 mm in 10 seconds. Study of thermo- and hygro-preferences for various groups of invertebrates helps to better describe their ecological niche in multidimensional space of ecologic factors.

References

Ali, W., George, D. R., Shiel, R. S., Sparagano, O. A. E., & Guy, J. H. (2012). Laboratory screening of potential predators of the poultry red mite (Dermanyssus gallinae) and assessment of Hypoaspis miles performance under varying biotic and abiotic conditions. Veterinary Parasitology, 187, 341–344.
Alyokhin, A., & Chen, Y. H. (2017). Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. Current Opinion in Insect Science, 21, 33–38.
Aupic-Samain, A., Baldy, V., Delcourt, N., Krogh, P. H., Gauquelin, T., Fernandez, C., & Santonja, M. (2021). Water availability rather than temperature control soil fauna community structure and prey–predator interactions. Functional Ecology, 35(7), 1550–1559.
Avtaeva, T., Petrovičová, K., Langraf, V., & Brygadyrenko, V. (2021). Potential bioclimatic ranges of crop pests Zabrus tenebrioides and Harpalus rufipes during climate change conditions. Diversity, 13, 559.
Barbosa, M. F. C., & de Moraes, G. J. (2016). Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Experimental and Applied Acarology, 69(3), 289–296.
Berndt, O., Meyhöfer, R., & Poehling, H.-M. (2004a). The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biological Control, 30(1), 17–24.
Berndt, O., Poehling, H.-M., & Meyhofer, R. (2004b). Predation capacity of two predatory laelapid mites on soil-dwelling thrips stages. Entomologia Experimentalis et Applicata, 112(2), 107–115.
Brygadyrenko, V. V. (2015a). Evaluation of the ecological niche of some abundant species of the subfamily Platyninae (Coleoptera, Carabidae) against the background of eight ecological factors. Folia Oecologica, 42(2), 75–88.
Brygadyrenko, V. V. (2015b). Influence of moisture conditions and mineralization of soil solution on structure of litter macrofauna of the deciduous forests of Ukraine steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 23(1), 50–65.
Brygadyrenko, V., Avtaeva, T., & Matsyura, A. (2021). Effect of global climate change on the distribution of Anchomenus dorsalis (Coleoptera, Carabidae) in Europe. Acta Biologica Sibirica, 7, 237–260.
Buczek, A., Zając, Z., Woźniak, A., Kulina, D., & Bartosik, K. (2017). Locomotor activity of adult Dermacentor reticulatus ticks (Ixodida: Amblyommidae) in natural conditions. Annals of Agricultural and Environmental Medicine, 24(2), 271–275.
Dermauw, W., Pym, A., Bass, C., Van Leeuwen, T., & Feyereisen, R. (2018). Does host plant adaptation lead to pesticide resistance in generalist herbivores? Current Opinion in Insect Science, 26, 25–33.
Duarte, A. D. F., Duarte, J. L. P., Da Silva, L. R., & Da Cunha, U. S. (2020). Stratiolaelaps scimitus (Mesostigmata: Laelapidae) as an option for the management of Coboldia fuscipes (Diptera: Scatopsidae) on mushroom cultivation. Systematic and Applied Acarology, 25(9), 1720–1722.
Duarte, A. F. da, Duarte, J. L. P., Silva, L. R. da, Gobbi, P. C., & Cunha, U. S. da (2021). Evaluation of Cosmolaelaps brevistilis and Stratiolaelaps scimitus (Mesostigmata: Laelapidae) as natural enemy of Bradysia aff. ocellaris (Diptera: Sciaridae). Systematic and Applied Acarology, 26(7), 1213–1228.
Ebssa, L., Borgemeister, C., & Poehling, H.-M. (2004). Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities, and temperatures. Biological Control, 29(1), 145–154.
Foelix, R. F. (1970). Chemosensitive hairs in spiders. Journal of Morphology, 132(3), 313–333.
Freire, R. A. P., & Moraes, G. J. (2007). Mass production of the predatory mite Stratiolaelaps scimitus (Womersley) (Acari: Laelapidae). Systematic and Applied Acarology, 12(2), 117.
Guschina, I. A., & Harwood, J. L. (2006). Mechanisms of temperature adaptation in poikilotherms. FEBS Letters, 580(23), 5477–5483.
Heethoff, M., & Koerner, L. (2007). Small but powerful: The oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. Journal of Experimental Biology, 210(17), 3036–3042.
Heethoff, M., Koerner, L., Norton, R. A., & Raspotnig, G. (2011). Tasty but protected – first evidence of chemical defense in oribatid mites. Journal of Chemical Ecology, 37(9), 1037–1043.
Islam, W., Adnan, M., Shabbir, A., Naveed, H., Abubakar, Y. S., Qasim, M., & Ali, H. (2021). Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis, 159, 105122.
Jess, S., & Schweizer, H. (2009). Biological control of Lycoriella ingenua (Diptera: Sciaridae) in commercial mushroom (Agaricus bisporus) cultivation: A comparison between Hypoaspis miles and Steinernema feltiae. Pest Management Science, 65, 1195–1200.
Jung, D. O., Hwang, H. S., Kim, J. W., & Lee, K. Y. (2018). Development of the mass-rearing technique for a predatory mite Stratiolaelaps scimitus (Acari: Laelapidae) using the double box system. Korean Journal of Applied Entomology, 57(4), 253–260.
Jung, D. O., Hwang, H. S., Kim, S. Y., & Lee, K. Y. (2019). Biological control of thrips using a self-produced predatory mite Stratiolaelaps scimitus in the greenhouse chrysanthemum. Korean Journal of Applied Entomology, 58, 233–238.
Lamichhane, J. R. (2017). Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop Protection, 97, 1–6.
Lee, R., den Uyl, R., & Runhaar, H. (2019). Assessment of policy instruments for pesticide use reduction in Europe; Learning from a systematic literature review. Crop Protection, 2019, 104929.
Makaida, M. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2021). Effect of increased ambient temperature on seasonal generation number in Lucilia sericata (Diptera, Calliphoridae). Folia Oecologica, 48(2), 191–198.
Malmström, A. (2008). Temperature tolerance in soil microarthropods: Simulation of forest-fire heating in the laboratory. Pedobiologia, 51, 419–426.
Martynov, V. O., Hladkyi, O. Y., Kolombar, T. M., & Brygadyrenko, V. V. (2019). Impact of essential oil from plants on migratory activity of Sitophilus granarius and Tenebrio molitor. Regulatory Mechanisms in Biosystems, 10(4), 359–371.
Mendyk, R. W. (2015). Preliminary notes on the use of the predatory soil mite Stratiolaelaps scimitus (Acari: Laelapidae) as a biological control agent for acariasis in lizards. Journal of Herpetological Medicine and Surgery, 25, 24–27.
Merrick, C., & Filingeri, D. (2019). The evolution of wetness perception: A comparison of arachnid, insect and human models. Journal of Thermal Biology, 2019, 102412.
Messelink, G. J., & van Holstein-Saj, R. (2011). Generalist predator Stratiolaelaps scimitus hampers establishment of the bulb scale mite predator Neoseiulus barkeri in Hippeastrum. Proceedings of the Netherlands Entomological Society Meeting, 22, 67–73.
Mizutani, K., Egashira, K., Toukai, T., & Ogushi, J. (2006). Adhesive force of a spider mite, Tetranychus urticae, to a flat smooth surface. JSME International Journal Series C, 49(2), 539–544.
Nehrii, V. V., & Brygadyrenko, V. V. (2022). Effects of aromatic compounds on movement activity of Pyrrhocoris apterus in the conditions of a laboratory experiment. Regulatory Mechanisms in Biosystems, 13(1), 80–84.
Park, J., Mostafiz, M. M., Hwang, H.-S., Jung, D.-O., & Lee, K.-Y. (2021a). Comparing the life table and population projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) based on the age-stage, two-sex life table theory. Agronomy, 11(6), 1062.
Park, J., Munir Mostafiz, M., Hwang, H.-S., Jung, D.-O., & Lee, K.-Y. (2021b). Comparison of the predation capacities of two soil-dwelling predatory mites, Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae), on three thrips species. Journal of Asia-Pacific Entomology, 24(1), 397–401.
Pasquier, A., Andrieux, T., Martinez-Rodiguez, P., Vercken, E., & Ferrero, M. (2021). Predation capacity of soil-dwelling predatory mites on two major maize pests. Acarologia, 61(3), 577–580.
Peattie, A. M., Dirks, J.-H., Henriques, S., & Federle, W. (2011). Arachnids secrete a fluid over their adhesive pads. PLoS One, 6(5), e20485.
Ramachandran, D., Lindo, Z., & Meehan, M. L. (2021). Feeding rate and efficiency in an apex soil predator exposed to short-term temperature changes. Basic and Applied Ecology, 50, 87–96.
Rawhat, U. N., Aadil, Y. T., Nazia, K., Kaisar, A. A., Shaheen, M. W., Saud, A. A., Mohammed, N. A., Leonard, W., & Ali, S. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences, 28(5), 3049–3059.
Requena-García, F., Cabrero-Sañudo, F., Olmeda-García, S., González, J., & Valcárcel, F. (2017). Influence of environmental temperature and humidity on questing ticks in Central Spain. Experimental and Applied Acarology, 71(3), 277–290.
Schilliger, L. H., Morel, D., Bonwitt, J. H., & Marquis, O. (2013). Cheyletus eruditus (Taurrus®): An effective candidate for the biological control of the snake mite (Ophionyssus natricis). Journal of Zoo and Wildlife Medicine, 44(3), 654–659.
Spagna, J. C., & Peattie, A. M. (2012). Terrestrial locomotion in arachnids. Journal of Insect Physiology, 58(5), 599–606.
Sun, W., Sarkar, S. C., Xu, X., Lei, Z., Wu, S., & Meng, R. (2018). The entomopathogenic fungus Beauveria bassiana used as granules has no impact on the soil-dwelling predatory mite Stratiolaelaps scimitus. Systematic and Applied Acarology, 23(11), 2165–2172.
Tabashnik, B. E., Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M., & Carrière, Y. (2014). Defining terms for proactive management of resistance to BT crops and pesticides. Journal of Economic Entomology, 107(2), 496–507.
Titov, O., & Brygadyrenko, V. (2021). Influence of synthetic flavorings on the migration activity of Tribolium confusum and Sitophilus granarius. Ekologia (Bratislava), 40(2), 163–177.
Uzman, D., Pliester, J., Leyer, I., Entling, M. H., & Reineke, A. (2018). Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils. Applied Soil Ecology, 133, 89–97.
Walter, D. E., & Oliver, J. H. (1990). Geolaelaps oreithyiae, n. sp. (Acari: Laelapidae), a thelytokous predator of arthropods and nematodes, and a discussion of clonal reproduction in the Mesostigmata. Acarologia, 30, 293–303.
Waqas, M. S., Saad Elabasy, A. S., Zaky Shoaib, A. A., Cheng, X., Zhang, Q., & Shi, Z. (2020). Lethal and sublethal effect of heat shock on Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Journal of Thermal Biology, 2020, 102679.
Wen, M. F., Chi, H., Lian, Y. X., Zheng, Y. H., Fan, Q. H., & You, M. S. (2017). Population characteristics of Macrocheles glaber (Acari: Macrochelidae) and Stratiolaelaps scimitus (Acari: Laelapidae) reared on a mushroom fly Coboldia fuscipes (Diptera: Scatopsidae). Insect Science, 26, 322–332.
Wright, E. M., & Chambers, R. J. (1994). The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciaridae). Entomophaga, 39(2), 225–235.
Wu, G. C., Wright, J. C., Whitaker, D. L., & Ahn, A. N. (2010). Kinematic evidence for superfast locomotory muscle in two species of teneriffiid mites. Journal of Experimental Biology, 213(15), 2551–2556.
Yan, H., Zhang, B., Wang, E., Xu, X., & Wei, G.-S. (2022). Combining predatory mites and film mulching to control Bradysia cellarum (Diptera: Sciaridae) on Chinese chives, Allium tuberosum. Experimental and Applied Acarology, 86(1), 117–127.
Yan, Y., Zhang, N., Liu, C., Wu, X., Liu, K., Yin, Z., Zhou, X., & Xie, L. (2021). A highly contiguous genome assembly of a polyphagous predatory mite Stratiolaelaps scimitus (Womersley) (Acari: Laelapidae). Genome Biology and Evolution, 13(3), evab011.
Published
2022-04-17
Section
Articles