Use of soil biota in the assessment of the ecological potential of urban soils


Keywords: algae, soil, urban ecosystem, biological diversity

Abstract

In assessing the ecological conditions and classification of urban soils, data about soil biota should be taken into account. The environment of urban territories is characterized by significant changes compared to their surrounding environments. It is established that the algal flora of urban soils lose their zonal features and features associated with the edification influence of higher plants. Specific biotopes with a definite species structure are formed in urboecosystems. Fifty 50 algae species have been recorded in the soils of the Henichesk urboecosystems (Kherson region, Ukraine): Cyanoprocaryota – 21, Chlorophyta – 13, Charophyta – 2, Eustigmatophyta – 1, Xanthophyta – 11, Bacillariophyta – 2. Among dominant and subdominant species were Cyanoprocaryota and Chlorophyta. The other phyla were represented by Klebsormidium dissectum, K. flaccidum, Hantzschia amphioxys, Eustigmatos magnus, Botrydiopsis eriensis. Compared with the surrounding environment, the urbanized flora of Henichesk has a low species richness, and is characterized by prevalence of Cyanoprocaryota and Chlorophyta species. The coefficient that takes into account the percentage of preservation of species richness in a particular urban area compared to the background indicators of species richness can be used to evaluate the urban transformation of soil biota. The degree of degradatory changes in the composition of living organisms and the direction of these changes depends on the specificity and intensity of exploitation of the territory of the urban ecosystem. The most diverse composition of algae species within the the city of Henichesk was noted in the recreational, residential, and transport zones, in comparison with the industrial zone and the zone of special use. Different functional areas of the city are distinguished not only by the algae species richness, but also by the composition of dominants. Among the dominants and subdominants of the recreational and transport zones were species of different phyla. The dominants and subdominants of the residential and industrial zones were Cyanoprocaryota species, in the zone of special use – representatives of Chlorophyta. The distribution of species richness of algae along the soil profile in the city acquires an atypical character. The species richness increases not in the most superficial layers of soil, but in the lower, aphotic parts of the soil profile. The soil biota, on the one hand, depends on the ecological conditions of soil, and on the other as a result of its life activity, changes the ecological functions of the soil, strengthening or weakening them. The reduction in the species richness of the soil algae of the urboecosystem Henichesk shows the limitations of ecological functions of urban soils. It is established that changes in the composition of algae in soils of urban ecosystems are one of the indicators of the presence and severity of transformation processes. These processes occur with the soil biota and soil as a whole under the conditions of urban ecosystems and can be used as indicators in the environmental assessment of urban soils, in the development and subsequent examination of ways to reduce negative expression of urbanization.

References

Aksenova, N. P., & Baranova, O. G. (2010). Kratkiy obzor urbanofloryi edafofil-nyih vodorosley i tsianoprocariot g. Izhevska [A brief review of the urban floras of edaphophylic algae and cyanoprokaryotes of Izhevsk]. Vestnik Ud-murtskogo Universiteta. Biologiya. Nauki o Zemle, 1, 27–31 (in Russian).

Aksoya, E., Louwagieb, G., Gardic, C., Gregord, M., Schrödera, C., & Löhnertzd, M. (2017). Assessing soil biodiversity potentials in Europe. Science of the Total Environment, 589, 236–249.

Antipina, G. S. (2016). Urbanoflora Petrozovodska: Pochvennyie vodorosli lesnyih uchastkov pri antropogennom vozdeystvii [Urbanoflora of Petrozavodsk: Soil algae of forest areas under anthropogenic impact]. Uchenyie Zapiski Petrozavodskogo Gosudarstvennogo Univesiteta, 159, 27–36 (in Russian).

Bessolitsyna, E. P., & Balyazin, I. V. (2013). Structural-dynamical analysis of the state of the biota of soils in urbanized geosystems (Exemplified by the City of Sayanogorsk). Geography and Natural Resources, 34(2), 137–143.

Blagodatnova, A. G., & Bachura, Y. M. (2015). Fitotsenoticheskaya struktura gruppirovok pochvennyih vodorostey i tsianobakteriy gorodskih gazonov (na primere g. Novosibirska i g. Gomelya) [Phytocenotic structure of groups of soil algae and cyanobacteria of urban lawns (on the example of Novosibirsk and the city of Gomel)]. Vestnik Novosibirskogo Gosudarstvennogo Peda-gogicheskogo Universiteta, 25, 82–93 (in Russian).

Caruso, T., Migliorini, M., Rota, E., & Bargagli, R. (2017). Highly diverse urban soil communities: Does stochasticity play a major role? Applied Soil Ecology, 110, 73–78.

Crispim, C. A., & Gaylarde, C. C. (2004). Cyanobacteria and biodeterioration of cultural heritage: A review. Microbial Ecology, 49(1), 1–9.

Crispim, C. A., Gaylarde, C. C., & Gaylarde, P. M. (2004). Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. International Biodeterior and Biodegradation, 54, 121–124.

Crispim, C. A., Gaylarde, P. M., & Gaylarde, C. C. (2003). Algal and cyanobacterial biofilms on calcareous historic buildings. Current Microbiology, 46(2), 79–82.

Dorokhova, M. F., Kosheleva, N. E., & Terskaya, E. V. (2015). Algae and cyano-bacteria in soils of Moscow. American Journal of Plant Sciences, 6(15), 2461–2471.

Fomina, N. V. (2013). Mikrobiologicheskiy analiz pochvyi rekreatsionnyih zon krasnoyarskoy urboekosistemyi [Microbiological analysis of soil in the recreational zones of the Krasnoyarsk urban ecosystem]. Vestnik KrasGAU, 11, 80–85 (in Russian).

Gaylarde, C. C., & Gaylarde, P. M. (2005). A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. International Biodeterior and Biodegradation, 55(2), 131–139.

Gaylarde, P. M., & Gaylarde, C. C. (2000). Algae and cyanobacteria on painted buildings in Latin America. International Biodeterior and Biodegradation, 46(2), 93–97.

Gollerbah, M. M., & Shtina, E. A. (1969). Pochvennyie vodorosli [Soil algae]. Nauka, Leningrad (in Russian).

Gorovits-Vlasova, L. M. (1927). K voprosu o sanitarnom izuchenii gorodskih pochv (issledovanie pochvyi g. Dnepropetrovska) [The issue about the sanitary study of urban soils (study of soil in Dnepropetrovsk)]. Gigiena i Epidemiologiya, 8, 66–71 (in Russian).

Gorovtsov, A., Rajput, V. D., Gorbov, S., & Vasilchenko, N. (2017). Bioindication-based approaches for sustainable management of urban ecosystems. In: Singh, R., Kumar, S. (Eds.). Green Technologies and Environmental Sustainability. Springer.

Hallmann, C., Rüdrich, J., Enseleit, M., Friedl, T., & Hoppert, M. (2011). Microbial diversity on a marble monument – A case study. Environmental Earth Sciences, 63(7–8), 1701–1711.

Häubner, N., Schumann, R., & Karsten, U. (2006). Aeroterrestrial miroalgae gro-wing in biofilms on facades – Response to temperature and water stress. Microbial Ecology, 51(3), 285–293.

Ilyushenko, A. E. (2001). Prisposobleniya pochvennyih vodorosley lesnyih fito-tsenozov k rekreatsionnyim nagruzkam [Adaptations of soil algae from the forest phytocenoses to recreational preassure]. Sibirskiy Ekologicheskiy Zhurnal, 4, 443–448 (in Russian).

Joimel, S., Schwartz, C., Hedde, M., Kiyota, S., & Cortet, J. (2017). Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of The Total Environment, 584–585, 614–621.

Kabirov, R. R., & Suhanova, N. V. (1997). Pochvennyie vodorosli gorodskih gazonov [Soil algae of urban lawns]. Botanicheskiy Zhurnal, 82(3), 46–57 (in Russian).

Karsten, U., Schumann, R., & Mostaert, A. (2007). Aeroterrestrial algae growing on man-made surfaces. In: Seckbach, J. (Ed.). Algae and Cyanobacteria in extreme environments. Cellular Origin, Life in Extreme Habitats and Astro-biology. Vol 11. Springer, Dordrecht.

Komárek, J., & Anagnostidis, K. (Eds.). (2005). Cyanoprokaryota. Part 2: Oscilla-toriales. Springer Spektrum, Heidelberg.

Komárek, J., Büdel, B., Gärtner, G., Krienitz, L., & Schagerl, M. (Eds.). (2013). Cyanoprokaryota, Part 3: Heterocytous Genera. Springer Specktrum, Berlin, Heidelberg.

Li, B., Wu, S., Zhou, S., Wang, T., & Chen, H. (2017). Quantifying and mapping threats to soilbiodiversity in Nanjing, China. European Journal of Soil Biology, 82, 72–80.

Maltsev, Y. I., Pakhomov, A. Y., & Maltseva, I. A. (2017). Specific features of algal communities in forest litter of forest biogeocenoses of the Steppe zone. Contemporary Problems of Ecology, 10(1), 71–76.

Maltseva, I. A., & Baranova, O. A. (2014). Vodorosli tehnogennyih ekotopov zhelezorudnogo proizvodstvan [Algae of man-made ecotop of iron ore production]. Algologiya, 24(3), 350–353 (in Russian).

Maltseva, I. A., & Scherbina, V. V. (2011). Vodorosti viddilu Cyanophyta deyakyx ob’yektiv pryrodno-zapovidnogo fondu pivdnya Ukrayiny [Cyanophyta of some objects of the nature reserve fund of the south part of Ukraine]. Gruntoznavstvo, 12(1–2), 78–80 (in Ukrainian).

Maltseva, I. А., & Chayka, N. I. (2011). Pochvennyie vodorosli otvala ugolnoy shahtyi Donetskoy oblasti [Soil algae of blade of coil in Donetsk region]. Visnyk Melitopolskogo Derzhavnogo Pedagogichnogo Universytetu imeni Bogdana Hmelnyckogo, 1(3), 45–54 (in Russian).

Maltseva, S. Y. (2015). Ohranjaemye i redkie vidy v urbanoflore Genicheska [Rare and protected species in urban flora of Genichesk]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 5(1), 105–114 (in Russian).

Maltseva, S. Y. (2016). Dendroflora Geniches’ka (Herson’ka oblast’, Ukraina) [Dendroflora of Genichesk (Kherson region, Ukraine)]. Visnyk of Kharkov National Agrarian University. Series Biology, 38, 106–114 (in Ukrainian).

Maltseva, S. Y., & Maltsev, Y. I. (2017). Novi znahidky u flori mist Pivnichnogo Pryazov’ja [New findings in urban flora of Northern Azov Sea region]. Ukrainian Journal of Ecology, 7(2), 55–58 (in Ukrainian).

Menendez, J. L., Rindi, F., Rico, J. M., & Guiry, M. D. (2006). The use of CHAID classification trees as an effective descriptor of the distribution of Rosenvingiella radicans (Prasiolales, Chlorophyta) in urban environments. Cryptogamie Algologie, 27, 153–164.

Meuser, H. (2010). Assessment of urban soils. In: Contaminated Urban Soils. Environmental Pollution, Vol. 18. Springer, Dordrecht.

Moskvich, N. P. (1973). Opyit ispolzovaniya vodorosley pri izuchenii sanitarnogo sostoyaniya pochv [Experience in the use of algae in studying of the sanitary state of soils]. Botanicheskiy Zhurnal, 58(3), 412–416 (in Russian).

Rahmatullina, I. V., & Kuznetsova, E. V. (2009). Rezultatyi issledovaniy pochvennoy algofloryi Yuzhnogo regiona Respubliki Bashkorstan [Results of soil algal flora research in the Southern Region of the Republic of Bashkortostan]. Vestnik OGU, 100, 594–596 (in Russian).

Rindi, F. (2007). Diversity, distribution and ecology of Green Algae and Cyano-bacteria in urban habitats. In: Seckbach, J. (Eds.). Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astro-biology, Vol. 11. Springer, Dordrecht.

Rindi, F., & Guiry, M. D. (2004). Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia, 43(3), 225–235.

Scherbina, V. V. (2011). Dynamika chyselnosti ta biomasy vodorostej stepovyx biogeocenoziv ta agrocenoziv Hersonskoyi oblasti [Dynamics of algal bio-mass and quantity in the steppe biogeocenoses and agrocenoses of the Kher-son region]. Biologichnyj Visnyk Melitopolskogo Derzhavnogo Pedagogi-chnogo Universytetu imeni Bogdana Xmelnyczkogo, 3, 80–86 (in Ukrainian).

Scherbina, V. V., Maltseva, I. A., & Solonenko, A. N. (2014). Peculiarities of post-pyrogene development of algae in steppe biocenoses at Askania Nova Biospheric National Park. Contemporary Problems of Ecology, 7(2), 187–191.

Sharipova, M. Y., & Dubovik, I. E. (2004). Kompleksnoe issledovanie algofloryi g. Ufyi [Comprehensive research of algoflora in Ufa]. Vestnik Bashkirskogo Universiteta, 4, 45–50 (in Russian).

Shekhovtseva, O. G., & Maltseva, I. A. (2010). Aerotehnogennoe izmenenie himicheskih pokazateley poverhnostnogo gorizonta pochv – osnovnogo mesta suschestvovaniya pochvennyih vodorostey (na primere urboekosistem g. Mariupolya) [Aerotechnogenic change in the chemical characteristics of the surface horizon of soils – the main site for the existence of soil algae (on the example of urboecosystems in Mariupol)]. Gruntoznavstvo, 11(1–2), 91–96 (in Russian).

Shekhovtseva, O. G., & Maltseva, I. A. (2015). Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Science, 48(12), 1393–1400.

Stankovic, S., & Stankovic, A. R. (2013). Bioindicators of toxic metals. In: Licht-fouse, E., Schwarzbauer, J., & Robert D. (eds). Green Materials for Energy, Products and Depollution. Environmental Chemistry for a Sustaina
ble World. Vol. 3. Springer, Dordrecht.

Stroganova, M. N., & Myagkova, A. D. (1996). Vliyanie negativnyih ekologi-cheskih protsessov na pochvyi goroda (na primere Moskvyi) [Influence of negative ecological processes on city soils (on the example of Moscow)]. Pochvovedenie, 17(4), 37–45 (in Russian).

Stroganova, M. N., Myagkova, A. D., & Prokof’eva, T. V. (1997). The role of soils in urban ecosystems. Eurasian Soil Science, 30(1), 82–86.

Stroganova, M. N., Prokof’eva, T. V., Lysak, L. V., Prokhorov, A. N., Yakovlev, A. S., & Sizov, A. P. (2003). Ecological conditions of urban soils and economic evaluation of lands. Eurasian Soil Science, 36(7), 780–787.

Suhanova, N. V., Fazlutdinova, A. I., & Haybullina, L. S. (2000). Diatomovyie vodorosli pochv gorodskih parkov [Soil diatoms of urban parks]. Pochvovedenie, 7, 840–846 (in Russian).

Suhanova, N. V., Fazlutdinova, A. I., Gaysina, L. A., & Bogdanova, A. V. (2011). Flora pochvennyih vodorosley i tsianobakteriy g. Neftekamsk (Respublika Bashkortostan) [Flora of soil algae and cyanobacteria of Neftekamsk (Republic of Bashkortostan)]. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 5(2), 115–117 (in Russian).

Truhnitskaya, S. M., & Koreneva, V. V. (2012). Vidovoe raznoobrazie tsianopro-kariot rekreatsionnyih territoriy g. Krasnoyarsk [Species diversity of cyano-procaryotes of recreational areas in Krasnoyarsk]. Vestnik KGPU im. V. P. As¬tafeva, 3, 347–349 (in Russian).

Tsarenko, P. M., Wasser, S., & Nevo, E. (Ed.). (2006). Algae of Ukraine: Diversity, nomenclature, taxonomy, ecology and geography. Vol. 1. Cyanoprocaryota, Euglenophyta, Chrysophyta, Xanthophyta, Raphidophyta, Dinophyta, Cryptophyta, Glaucocystophora and Rhodophyta. A. R. A. Gantner, Ruggell.

Tsarenko, P. M., Wasser, S., & Nevo, E. (Ed.). (2009). Algae of Ukraine: Diversity, nomenclature, taxonomy, ecology and geography. Vol. 2. Bacillariophyta. A. R. G. Gantner, Rugell, Königstein.

Tsarenko, P. M., Wasser, S., & Nevo, E. (Ed.). (2011). Algae of Ukraine: Diversity, nomenclature, taxonomy, ecology and geography. Vol. 3. Chlorophyta. A. R. G. Gantner, Rugell, Königstein.

Tsarenko, P. M., Wasser, S., & Nevo, E. (Ed.). (2014). Algae of Ukraine: Diversity, nomenclature, taxonomy, ecology and geography. Vol. 4. Charophyta. Koeltz Scientific Books, Königstein.

Uher, B., Aboal, M., & Kovacik, L. (2005). Epilithic and chasmoendolithic phy-coflora of monuments and buildings in South-Eastern Spain. Cryptogamie Algologie, 26(3), 275–308.

Wei, H., Liu, W., Zhang, J., & Qin, Z. (2017). Effects of simulated acid rain on soil fauna community composition and their ecological niches. Environmental Pollution, 220, 460–468.
Published
2017-11-30
Section
Articles

Most read articles by the same author(s)