Biodiversity and dynamics of plant groups of Chebket El Melhassa region (Algeria)

  • B. Maamar El Wancharissi University Center
  • B. Nouar Abu Bakr Belkaid University
  • L. Soudani Ibn Khaldoun Tiaret University
  • M. Maatoug Ibn Khaldoun Tiaret University
  • M. Azzaoui Ex Hall Technology
  • M. Kharytonov Dnipro State Agrarian and Economic University
  • O. Wiche Institut für Biowissenschaften
  • O. Zhukov Oles Honchar Dnipro National University
Keywords: Phytoecology, vegetation dynamics, F.A.C, Chebket El Melhassa, Tiaret


This article examines phytoecological aspects of plant groups in the Chebket El Melhassa region (Tiaret-Ouest Algérien) by several types of analysis: biological, biogeographic and statistical. From the plant analysis, a list of 103 taxa distributed in 36 families was compiled, biologically characterized by a dominance of therophytes (45.6%) with species of the Mediterranean biogeographic type 20 species (19.8%) assuming particular importance. The ordination of the plant community was performed in the search for the optimum solution based on correlation with environmental factors, estimated using the phytoindication approach. The results reveal that the plants represented in the community, mostly prefer strongly lit places. Phytoindication shows a warm sub Mediterranean climate. Continentality corresponds to the sub-oceanic climate. The moisture regime ranges from strongly dry to dry soil. The plant community is formed on moderately acid soils. Plants are able to grow on both strongly acidic and neutral soils. The soil is very poor or poor in nitrogen. A four dimension variant of multidimensional scaling procedure was selected as the most appropriate decision. Dimensions selected after nonmetric multidimensional scaling were interpreted by computing weighted average scores of ecological factors for ordination configuration. Four of the plant species clusters were found to be the optimal solution on the basis of the Calinsky-Harabasz criteria. The clusters can be viewed as a functional group. Functional group A is quite diverse and represented by 42 species. This functional group is closest to the community optimum because in all four space dimensions the corresponding cluster is near the origin, which corresponds to the most typical ecological conditions. Species that constitute the group B prefer minimum values of dimension 2. This indicates a preference for illuminated sites with high temperature regime and low soil humidity. This group includes 32 species. A feature of group С is that it is located in the area of maximum values for dimension 2. Thus, this functional group is opposite to functional group B. This indicates a preference of species included in the functional group C for wetter soils. Functional group C comprises 21 species. Functional group D differs considerably from all others in its ecological characteristics. The difference is in the preference for minimum values for measurement 1. This suggests that more acid soils are optimal for a given functional group. Functional group E comprises 8 species.


Allen, T. F. H., Sadowsky, D. A., & Woodhead, N. (1984). Data transformation as a scaling operation in ordination of plankton. Vegetatio, 56, 147–160.

Ashby, E. (1936). Statistical ecology. The Botanical Review, 2, 221–235.

Austin, M. P. (2013). Vegetation and environment: Discontinuities and continuities. In: van der Maarel, E., & Franklin, J. (ed.). Vegetation Ecology. Second edi tion. John Wiley & Sons, Ltd. pp. 52–84.

Barbero, M., Quezel, P., & Loisel, R. (1990). Les apports de la phyto-écologie dans l’interprétation des changements et perturbations induits par l’homme sur les écosystèmes forestiers méditerranéens. Forêt Méllitertanéenne, 12, 194–215.

Benabadji, N., & Bouazza, M. (2001). L’impact de l’homme sur la forêt dans la région de Tlemcen. Forêt Méllitertanéenne, 22(3), 269–274.

Benabadji, N., Benabadji Bouchenak-Khelladi, A., Regagba, Z., & Medarbal, K., (2014). Some anthropic aspects in Meridional Region of Sebdou (Oran-Algeria). Open Journal of Ecology, 4, 678–692.

Benabid, A. (1984). Etudes phytosociologique et phytodynamique et leurs utilites. Annales de la Recherche Forestière au Marocco, 24, 3–35.

Benkhettou, A., Azouzi, B., Djili, K., Benkhettou, M., Zedek, M., & Saadi, R. (2015). Diversité floristique du massif du Nador en zone steppique (Tiaret, Algérie). European Scientific Journal, 21, 401–419.

Braun-Blanquet, J., Roussine, N., Nègre, R., & Emberger, L. (1951). Les groupe ments végétaux de la France méditerranéenne. C. N. R. S., Paris.

Brygadyrenko, V. V. (2015). Vplyv umov zvolozhennja ta mineralizaciji grunto vogo rozchynu na strukturu pidstylkovoji mezofauny shyrokolystjanyh lisiv stepovoji zony Ukrajiny [Influence of moisture conditions and mineralization of soil solution on structure of litter macrofauna of the deciduous forests of Ukraine steppe zone]. Visnyk of Dnipropetrovsk University. Biology, Ecolo gy, 23(1), 50–65 (in Ukrainian).

Brygadyrenko, V. V. (2016). Evaluation of ecological niches of abundant species of Poecilus and Pterostichus (Coleoptera: Carabidae) in forests of the steppe zone of Ukraine. Entomologica Fennica, 27(2), 81–100.

Daget, P., (1980). On the biological types as adaptive strategy (Case of therophytes). In: Barbault, R., Blandin, P., & Meyer, J. A. (Eds.). Searching theoretical ecology, adaptive strategies. Maloine, Paris. pp. 89–114.

Diekmann, M. (2003). Species indicator values as an important tool in applied plant ecology – A review. Basic and Applied Ecology, 4(6), 493–506.

Dray, S., & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.

Hachemi, N., Hasnaoui, O., Benmehdi, I., Medjati, N., & Bouazza, M. (2012). Contribution à l’étude de la thérophytisation des matorrals des versants sud des monts de Tlemcen (Algérie occidentale). Mediterranea (serie de estudios biológicos), 23(2), 158–180.

Hasnauoi, O., & Bouazza, M. (2015). Indicateurs De dégradation des bio-ressour ces naturelles de l’Algérie occidentale: Cas de la steppe de la wilaya de saida. Algerian Journal of Arid Environment, 5(1), 63–75.

Hill, M. O., Mountford, J. O., Roy, D. B., & Bunce, R. G. H. (1999). Ellenberg’s in dicator values for British plants. Huntingdon, Institute of Terrestrial Ecology.

Horsák, M., Hájek, M., Tichý, L., & Juřičková, L. (2007). Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica, 32(2), 161–171.

Landolt, E. (1977). Ökologische Zeigerwerts zur Schweizer Flora. Veröff. Geo bot. Inst. ETH. Zurich, 64, 1–208.

Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species. Oecologia, 129(2), 271–280.

Le-Houerou, H. N. (1995). Bioclimatologie et biogéographie des steppes arides du Nord de l’Afrique. Diversité biologique, développement durable et déserti sation. Option Méditerranéennes Sér. B, 10.

Loisel, R., & Gamila, H. (1993). Traduction des effets du débroussaillement sur les écosystèmes forestiers et pré-forestiers par un indice de perturbation. Annales de la Société des Sciences Naturelles et d'Archéologie de Toulon et du Var, 123–132.

Minchin, P. R. (1989). Montane vegetation of the Mt. Field Massif, Tasmania: A test of some hypotheses about properties of community patterns. Vegeta tio, 83, 97–110.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2017). Community Ecology Package. R package.

Pélissier, R., Couteron, P., Dray, S., & Sabatier, D. (2003). Consistency between ordination techniques and diversity measurements: Two strategies for species occurrence data. Ecology, 84, 242–251.

Pignatti, S., Menegoni, P., & Pietrosanti, S. (2005). Bioindicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia, 39, 1–97.

Quézel, P., & Santa, S. (1962). Nouvelle Flore de l’Algérie et des régions déserti ques méridionales. Thom 1–2. C. N. R. S., Paris.

Quézel, P., Barbero, M., Bonin, G., & Loisel, R. (1980). Essai de corrélations phyto-sociologiques et bioclimatiques entre quelques structures actuelles et passées de la végétation méditerranéenne. Naturalia Monspelliensis, 79–87.

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Raunkiaer, C. (1905). Types biologiques pour la géographie botanique. Bulletin Académique, Revue Scientifique Danemark, 347–437.

Seidling, W., & Fischer, R. (2008). Deviances from expected Ellenberg indicator values for nitrogen are re lated to N throughfall deposition in forests. Ecological Indicators, 8(5), 639–646.

Stambouli-Meziane, H., & Bouazza, M. (2012). Anthropogenic effects on plant cover in the Tlemcen region (Western Algeria). Open Journal of Ecology, 3, 141–146.

ter Braak, C. J. F., & Gremmen, N. J. M. (1987). Ecological amplitudes of plant species and the internal consistency of Ellenberg's indicator values for mois ture. Vegetatio, 69, 79–87.

ter Braak, C. J. F., & Looman, C. W. N. (1986). Weighted averaging, logistic reg ression and the Gaussian response model. Vegetatio, 65, 3–11.

Vitasović Kosić, I., Juračak, J., & Łuczaj, L. (2017). Using Ellenberg-Pignatti values to estimate habitat preferences of wild food and medicinal plants: An example from northeastern Istria (Croatia). Journal of Ethnobiology and Ethnomedicine, 13, 31.

Zarzycki, K. (1984). Indicator values of vascular plants in Poland. Instytut Botaniki Polska Akademia Nauk, Krakow.

Zhukov, A. V. (2015). Phytoindicator estimation of the multidimensional scaling of the plant community structure. Biological Bulletin of Bogdan Chmel nitskiy Melitopol State Pedagogical University, 1(1), 69–93.

Zhukov, A., & Zadorozhnaya, G. (2016). Spatial heterogeneity of mechanical im pedance of a typical chernozem: The ecological approach. Ekológia (Brati slava), 35, 263–278.