Optimization of microclonal propagation in vitro of oregano (Origanum vulgare)

Keywords: auxiliary buds; internodes; root formation; composition of nutrient medium


Medicinal plants are important objects for botany, systematics and plant geography research, as well as physiology, pharmacology, and biotechnology. Medicinal plants from the Lamiaceae family are being intensively studied for medical and pharmacological reasons. This family also includes the medicinal herbaceous plant oregano (Origanum vulgare L.), known from ancient times for its antimicrobial and antifungal properties, the ability to strengthen the human immune system, and to improve the general state of an organism. At present, the study of its antimicrobial, antifungal, insecticidal, anticoagulant, antitumor, therapeutic and many other properties is being actively continued. Due to the relevance of the development of the principles of O. vulgare micropropagation in vitro and the undeveloped conditions and methods of its cultivation, the aim of this work was to optimize microclonation in vitro of oregano via the activation of auxiliary buds. The research tasks were to test the ability of auxiliary buds to be activated depending on the localization on the donor shoot internodes and to intensify the root formation of cuttings through medium content optimization. The influence of the location of the auxiliary buds on donor shoots on their activation in vitro was studied on such indicators as the length of newly formed shoots, the number of nodules per one newly formed shoot, and the number of newly formed shoots per one bud. In plant microclonal propagation, the stage of root formation is very important for further adaptation in soil. Practical experience has shown that for the effective adaptation of oregano in soil, the length of the root system for cuttings should be 1.5–2.0 cm, the degree of root system development – 4–5 points under shoot length of 3–5 cm. The study of peculiarities of oregano microclonal propagation via activation of auxiliary buds has allowed us to optimize the stage of explant selection for cutting and the formation of cuttings’ roots. It has been established that for optimal length, the number of nodules of the newly formed shoots and the number of newly formed shoots, the first internode, located on the top of a parent shoot, as well as the third to fifth ones are more suitable. For rooting oregano cuttings, the optimal medium on the ratio of length and density of root system and on shoot length is the nutrient one containing half of the macro-, microsalts and vitamins on Murashige-Skoog, 20 g/l sucrose and 0.75 mg/l kinetin.


Benedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Collection 2018. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International journal Nanomedicine, 13, 1041–1058.

Bojko, E. F. (2011). Ocenka kachestva rastitelnogo syrja Origanum vulgare L. [Evaluation of the quality of plant raw material Origanum vulgare L.]. Trudy Nikitskogo Botanicheskogo Sada, 133, 28–40 (in Russian).

Bona, E., Cantamessa, S., Pavan, M., Novello, G., Massa, N., Rocchetti, A., Berta, G., & Gamalero, E. (2016). Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? Journal of Applied Microbiology, 121(6), 1530–1545.

Da Silva, C. S., de Souza, E. J., Pereira, G. F., Cavalcante, E. O., de Lima, E. I., Torres, T. R., da Silva, J. R., & da Silva, D. C. (2017) Plant extracts as phytogenic additives considering intake, digestibility, and feeding behavior of sheep. Tropical Animal Health Production, 49(2), 353–359.

Dakah, A., Zaid, S., Suleiman, M., Abbas, S., & Wink, M. (2014). In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity. Saudi Journal of Biological Science, 21(4), 317–323.

El Beyrouthy, M., Elian, G., Abou Jaoudeh, C., & Chalak, L. (2015). In vitro propagation of Origanum syriacum and Origanum ehrenbergii. Acta Horticulturae, 1083, 169–172.

Elshafie, H. S., Armentano, M. F., Carmosino, M., Bufo, S. A., De Feo, V., & Camele, I. (2017). Cytotoxic activity of Origanum vulgare L. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules, 22(9), 1435–1436.

Fabbri, J., Maggiore, M. A., Pensel, P. E., Denegri, G. M., Gende, L. B., & Elissondo, M. C. (2016). In vitro and in vivo efficacy of carvacrol against Echinococcus granulosus. Acta Tropica, 164, 272–279.

Forte, C., Branciari, R., Pacetti, D., Miraglia, D., Ranucci, D., Acuti, G., Balzano, M., Frega, N. G., & Trabalza-Marinucci, M. (2018). Dietary oregano (Origanum vulgare L.) aqueous extract improves oxidative stability and consumer acceptance of meat enriched with CLA and n-3 PUFA in broilers. Poultry Science, 97(5), 1774–1785.

Gamborg, O. L., Murashige, T., Thorpe, T. A., Vasil, I. K. (1976). Plant tissue culture media. In Vitro, 12(7), 473–478.

Goleniowski, M. E., Flamarique, C., & Bima, P. (2003). Micropropagation of oregano (Origanum vulgare×applii) from meristem tips in vitro. Cellular Developmental Biology – Plant, 39(2), 125–128.

Habibi, P., Sa, M. F., Silva, A. L., Makhzoum, A., Luz Costa, J., Borghetti, I. A., & Soccol, C. R. (2016). Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiology and Molecular Biology Plants., 22(2), 271–278.

Han, X., & Parker, T. L. (2017). Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano (Origanum vulgare) essential oil in a human skin disease model. Biochimie Open, 4, 73–77.

Iconomou-Petrovich, G. N., & Nianiou-Obeidat, I. (1998) Micropropagation of Origanum vulgare subsp. hirtum (Mt. Taygetos). In: Tsekos, I., & Moustakas, M. Progress in Botanical Research. Springer. Pp. 509–512.

Kapchina-Toteva, V., Dimitrova, M. A., Stefanova, M., Koleva, D., Kostov, K., Yordanova, Z. P., Stefanov, D., & Zhiponova, M. K. (2014). Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation. Journal of Plant Physiology, 171(15), 1344–1353.

Karousou, R., Dardioti, A., & Kokkini S. (1998). Origanum vulgare L. in the Balkan Peninsula and Anatolia: Distribution and morphological variation. In: Tsekos, I., & Moustakas, M. Progress in Botanical Research. Springer. Pp. 73–76.

Khosravi, A. R., Sharifzadeh, A., Nikaein, D., Almaie, Z., & Gandomi Nasrabadi, H. (2018). Chemical composition, antioxidant activity and antifungal effects of five Iranian essential oils against Candida strains isolated from urine samples. Journal de Mycologie Médicale, 17, 30297–30301.

Kolling, G. J., Stivanin, S. C. B., Gabbi, A. M., Machado, F. S., Ferreira, A. L., Campos, M. M., Tomich, T. R., Cunha, C. S., Dill, S. W., Pereira, L. G. R., & Fischer, V. (2018). Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. Journal of Dairy Science, 18, 30153–30163.

Kosakowska, O., & Czupa, W. (2018). Morphological and chemical variability of common oregano (Origanum vulgare L. subsp. vulgare) occurring in eastern. Poland Herba Polonica, 64(1), 11–21.

Kudrjashova, L. V. (2010). Aromaterapija. Teorija i praktika [Aromatherapy. Theory and practice]. Simferopol'skaja Gorodskaja Tipografija, Simferopol (in Russian).

Kushnir, G. P, & Sarnacka, V. V. (2005). Microclonalne rozmnojennja rastenij [Microclonal propagation of the plants]. Naukova Dumka, Kyiv (in Ukrainian).

Liu, Z. X., Wei, H. K., Zhou, Y. F., & Peng, J. (2018). Multi-level mixed models for evaluating factors affecting the mortality and weaning weight of piglets in large-scale commercial farms in central China. Animal Science Journal, 89(5), 760–769.

Lukas, B., Schmiderer, C., & Novak, J. (2013) Phytochemical diversity of Origanum vulgare L. subsp. vulgare (Lamiaceae) from Austria. Biochemical Systematics and Ecology, 50, 106–113.

Mamadalieva, N. Z., Akramov, D. K., Ovidi, E., Tiezzi, A., Nahar, L., Azimova, S. S., & Sarker, S. D. (2017). Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines (Basel), 4(1), 8–9.

Menezes, N. M. C., Martins, W. F., Longhi, D. A., & de Aragão, G. M. F. (2018). Modeling the effect of oregano essential oil on shelf-life extension of vacuum-packed cooked sliced ham. Meat Science, 139, 113–119.

Mozafari, A. A., Vafaee, Y., & Karami, E. (2015). In vitro propagation and conservation of Satureja avromanica Maroofi – an indigenous threatened medicinal plant of Iran. Physiology and Molecular Biology of Plants, 21(3), 433–439.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

Nirumand, M. C., Hajialyani, M., Rahimi, R., Farzaei, M. H., Zingue, S., Nabavi, S. M., & Bishayee, A. (2018). Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms. International Journal of Molecular Science, 19(3), e765.

Ozdemir, F. A., Yildirim, M. U., & Kahriz, M. P. (2014). Efficient micropropagation of highly economic, medicinal and ornamental plant Lallemantia iberica (Bieb.) Fisch. and C. A. Mey. BioMed Research International, 2014, ID 476346.

Parreira, D. S., Alcántara-de la Cruz, R., Leite, G. L. D., Ramalho, F. S., Zanuncio, J. C., & Serrão, J. E. (2018). Quantifying the harmful potential of ten essential oils on immature Trichogramma pretiosum stages. Chemosphere, 199, 670–675.

Prasanna, R., Ashraf, E. A., & Essam, M. A. (2016). Chamomile and oregano extracts synergistically exhibit antihyperglycemic, antihyperlipidemic, and renal protective effects in alloxan-induced diabetic rats. Canadian Journal Physiology Pharmacology, 95(1), 84–92.

Svoboda, K. P., Finch, R. P., Cariou, E., & Deans, S. G. (1995). Production of volatile oils in tissue culture of Origanum vulgare and Tanacetum vulgare. Acta Horticulturae, 390, 147–152.

Szczepanik, M., Walczak, M., Zawitowska, B., Michalska-Sionkowska, M., Szumny, A., Wawrzeńczyk, C., & Brzezinska, M. S. (2017). Chemical composition, antimicromicrobial activity and insecticidal activity against the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) of Origanum vulgare L. ssp. hirtum (Link) and Artemisia dracunculus L. essential oils. Journal of the Science of Food and Agriculture, 98(2), 767–774.

Wei, J., Huang, Q., Bai, F., Lin, J., Nie, J., Lu, S., Lu, C., Huang, R., Lu, Z., & Lin, X. (2017). Didymin induces apoptosis through mitochondrial dysfunction and up-regulation of RKIP in human hepatoma cells. Chemico-Biological Interactions, 261, 118–126.

Wijesundara, N. M., & Rupasinghe, H. P. V. (2018). Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microbial Pathogenesis, 117, 118–127.

Yildirim, M. U. (2013). Micropropagation of Origanum acutidens using stem node explants. The Scientific World Journal, 2013, e276464.

Zhou, Y., Sun, S., Bei, W., Zahi, M. R., Yuan, Q., & Liang, H. (2018). Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. International Journal of Biological Macromolecules, 112, 7–13.

Žukauska, I. (2015) Ethnobotanical evaluation of oregano (Origanum vulgare) in Latvia. Planta Medica, 81, PW_28.